Description Module

Description Module

The Description Module contains narrative descriptions of the clinical trial, including a brief summary and detailed description. These descriptions provide important information about the study's purpose, methodology, and key details in language accessible to both researchers and the general public.

Description Module path is as follows:

Study -> Protocol Section -> Description Module

Description Module


Ignite Creation Date: 2025-12-25 @ 2:17 AM
Ignite Modification Date: 2025-12-25 @ 2:17 AM
NCT ID: NCT04200560
Brief Summary: Aging is inevitable and is the primary risk factor for developing cardiovascular disease. The molecular mechanisms that drive vascular dysfunction in the context of aging are incompletely understood. The overall hypothesis is that the age-related decline in endothelial cell (EC) autophagy leads to arterial dysfunction. This study will determine whether physiological shear-stress affects autophagosome formation and nitrous oxide (NO) generation in ECs.
Detailed Description: It is hypothesized that genetic autophagy suppression prevents shear-stress induced purinergic signaling to endothelial nitrous oxide synthase (eNOS) and this pathway will be evaluated in primary arterial ECs obtained from older adult (\> 60 years) and adult (18-30 years) subjects before and following rhythmic handgrip exercise that elevates brachial artery shear-rate similarly in both groups. ECs will be used to quantify markers of EC autophagy, eNOS activation, and NO generation. The study will also determine whether exercise-training attenuates the aging-associated decline in EC autophagy, and whether intact autophagy is required for training-induced vascular improvements. To evaluate this potential, it will be determined whether one-limb rhythmic handgrip exercise training by older adult (\> 60 y) human subjects is sufficient to elevate basal and shear-induced EC autophagy initiation, eNOS activation, and NO generation vs. the contralateral sedentary limb. Results from this work have tremendous potential to reveal a new therapeutic target and approach for restoring / maintaining vascular function in the aging population.
Study: NCT04200560
Study Brief:
Protocol Section: NCT04200560