Description Module

Description Module

The Description Module contains narrative descriptions of the clinical trial, including a brief summary and detailed description. These descriptions provide important information about the study's purpose, methodology, and key details in language accessible to both researchers and the general public.

Description Module path is as follows:

Study -> Protocol Section -> Description Module

Description Module


Ignite Creation Date: 2025-12-25 @ 2:37 AM
Ignite Modification Date: 2025-12-25 @ 2:37 AM
NCT ID: NCT03148834
Brief Summary: Reperfusion therapy in acute myocardial infarction saves viable myocardium, but paradoxically reestablishment of coronary artery flow also induces damage and cell death, decreasing the full benefit of reperfusion in terms of reduction of infarct size and preservation of ventricular function . Myocardial reperfusion can in itself produce more damage and cell death, this process defines the phenomenon of reperfusion injury, which could be prevented by applying additional therapies.
Detailed Description: During myocardial ischemia, due to lack of O2, the myocyte leaves energy production from the aerobic metabolism of lipids and the production of energy in the form of phosphates will depend, in this situation, on the anaerobic metabolism of glucose. As a result they are consumed muscle glycogen stores that produce little ATP, and also generating acidosis. The cell membrane loses its ability to maintain the fluid's electrolyte balance. Cellular edema is generated by the entry of sodium and water, leading to cell rupture. During ischemia and reperfusion free radicals are produced that stimulate inflammation and consequently release prothrombotic and cytotoxic substances that also produce cellular damage. Due to its osmotic, antithrombotic, anti-inflammatory and rheological effects, dextran could be useful in this scenario. The administration of a solution in the distal bed, for the protection of the myocardium, before opening the epicardial artery is called by us "controlled reperfusion". The researchers think, using a solution with venous blood, containing less O2 but retaining buffer properties; enriched with Dextran, which has onctic power, anti-inflammatory and anticoagulant properties, and molecules similar to glucose; results in a potentially useful solution for myocardial protection in this scenario. The group of investigators expect that controlled reperfusion treatment will reduce the incidence of ST correction and infarct size by 20-30%, improving the prognosis in terms of mortality and heart failure.
Study: NCT03148834
Study Brief:
Protocol Section: NCT03148834