Description Module

Description Module

The Description Module contains narrative descriptions of the clinical trial, including a brief summary and detailed description. These descriptions provide important information about the study's purpose, methodology, and key details in language accessible to both researchers and the general public.

Description Module path is as follows:

Study -> Protocol Section -> Description Module

Description Module


Ignite Creation Date: 2025-12-25 @ 4:10 AM
Ignite Modification Date: 2025-12-25 @ 4:10 AM
NCT ID: NCT06542120
Brief Summary: The purpose of this research is to develop a body voice artificial intelligence (AI) recognition device, also referred to as an AI-assisted body sound identification device, by utilizing a deep learning-based novel AI algorithm in conjunction with a big body voice model. It could identify normal and abnormal heart, breath, and bowel sounds, and to provide early screening and auxiliary diagnosis of congenital heart disease (CHD), respiratory infections, diarrhea and other common multi-occurring diseases.
Detailed Description: The study employed a multicenter cross-sectional design. The real-world data collected for this study included normal and definitively diagnosed heart sounds in children with congenital heart disease, normal and definitively diagnosed respiratory tract infections in children with breath sounds, specific cough sounds, and normal and definitively diagnosed children's bowel sounds with diarrhea. The specialist team will carry out data governance, annotation, and feature sound extraction on the gathered normal and aberrant sounds, in order to generate a superior multimodal training dataset. Large model artificial intelligence algorithms (deep learning, machine learning, etc.) are used to model and train the algorithm model of the body voice AI recognition device, so that it can distinguish between normal and abnormal sound signals by AI. The results of body sound AI identification will be compared with diagnostic reports from echocardiograms, chest X-rays, and belly X-rays in terms of AUC (Area Under Curve) score, sensitivity, specificity, and accuracy to evaluate the impact of AI recognition devices on illness screening and supplementary diagnosis. External validation will be conducted using homogeneous data from other sites. This project aims to develop a new generation of intelligent sound auscultation instruments that could be used for early screening and auxiliary diagnosis of congenital heart disease , respiratory infections, diarrhea and other common multi-occurring diseases by utilizing large model artificial intelligence technologies.
Study: NCT06542120
Study Brief:
Protocol Section: NCT06542120