Description Module

Description Module

The Description Module contains narrative descriptions of the clinical trial, including a brief summary and detailed description. These descriptions provide important information about the study's purpose, methodology, and key details in language accessible to both researchers and the general public.

Description Module path is as follows:

Study -> Protocol Section -> Description Module

Description Module


Ignite Creation Date: 2025-12-25 @ 5:02 AM
Ignite Modification Date: 2025-12-25 @ 5:02 AM
NCT ID: NCT05329818
Brief Summary: The present study aims to investigate the therapeutic potential of a high definition transcranial direct current stimulation protocol, stimulating frontal and cerebellar areas boosting the cognitive and motor recovery of stroke population.
Detailed Description: Stroke cause direct network dysfunctions correlating with the underlying behavioral deficits In that context, characterize and boost neuronal reshaping towards a favorable state for recovery has become a distinguished therapeutic approach. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation able to locally modulate neuronal activity and modify neural arquitecture. In such scenario, the investigators develop in this protocol a new tDCS multitarget fronto-cerebellar tDCS approach, exploring the benefits of boosting motor dysfunctions by means of a dual site-approach, up-regulating dlPFC and CB activity. The investigators here design a pilot experimental clinical trial exploring the accumulative clinical potential for motor skill \& learning recovery and EEG effects of a high-density bifocal transcranial direct current stimulation protocol (HD-tDCS). The investigators hypothesize that the tDCS protocol will promote direct functional motor reorganization helping relearning motor process, will boost the activity of prefrontal settled systems correcting attentional deficits and increasing strength connectivity with premotor systems, and will normalize large-scale abnormalities increasing interhemispheric functional connectivity (i.e., functional integration), decreasing interhemispheric asymmetry (i.e., functional segregation) and restoring transcallosal balance, impacting positively either in motor and cognitive recovery. All in all, this study will be the first exploring the simultaneous modulation of two different targets in stroke population corresponding to different networks looking for a summative/synergistic effects helping motor and cognitive functions recovery.
Study: NCT05329818
Study Brief:
Protocol Section: NCT05329818