Description Module

Description Module

The Description Module contains narrative descriptions of the clinical trial, including a brief summary and detailed description. These descriptions provide important information about the study's purpose, methodology, and key details in language accessible to both researchers and the general public.

Description Module path is as follows:

Study -> Protocol Section -> Description Module

Description Module


Ignite Creation Date: 2025-12-24 @ 12:51 PM
Ignite Modification Date: 2025-12-24 @ 12:51 PM
NCT ID: NCT04445961
Brief Summary: Data on respiratory mechanics and gas exchange in acute respiratory failure in COVID-19 patients is limited. Knowledge of respiratory mechanics and gas exchange in COVID-19 can lead to different selection of mechanical ventilation strategy, reduce ventilator-associated lung injury and improve outcomes. The objective of the study is to evaluate the respiratory mechanics, lung recruitability and gas exchange in COVID-19 -associated acute respiratory failure during the whole course of mechanical ventilation - invasive or non-invasive.
Detailed Description: In December 2019, an outbreak of a novel coronavirus (SARS-CoV-2) emerged in Wuhan, China and rapidly spread worldwide. The World Health Organization (WHO) declared the outbreak a pandemic on March 11th, 2020. The clinical disease (COVID-19) results in critical illness in about 5% of patients with predominant acute respiratory failure. The goal of the study is the evaluation of the respiratory mechanics (peak inspiratory pressure (PIP), plateau pressure (Pplat), static compliance (Cstat), driving pressure (DP) at different positive end-expiratory pressure (PEEP) levels and different tidal volumes (Vt) (6-8 ml/kg ideal body weight), lung recruitability (by change of DP and oxygenation) and gas exchange (PaO2/FiO2 ratio and alveolar dead space) in COVID-19 -associated acute respiratory failure during the whole course of mechanical ventilation - invasive or non-invasive for selection of safe and effective PEEP level, Vt, respiratory rate (RR) and inspiratory oxygen fraction (FiO2) during the whole course of mechanical ventilation - invasive or non-invasive. This study is multicentral observational trial in 3 University clinics.
Study: NCT04445961
Study Brief:
Protocol Section: NCT04445961