Description Module

Description Module

The Description Module contains narrative descriptions of the clinical trial, including a brief summary and detailed description. These descriptions provide important information about the study's purpose, methodology, and key details in language accessible to both researchers and the general public.

Description Module path is as follows:

Study -> Protocol Section -> Description Module

Description Module


Ignite Creation Date: 2025-12-24 @ 11:47 PM
Ignite Modification Date: 2025-12-24 @ 11:47 PM
NCT ID: NCT05009251
Brief Summary: The study team previously demonstrated that patients are more likely to receive flu vaccine after learning that they are at high risk for flu complications. Building on this past work, the present study will explore whether providing reasons that patients are considered high risk for flu complications (a) further increases the likelihood they will receive flu vaccine and (b) decreases the likelihood that they receive diagnoses of flu and/or flu-like symptoms in the ensuing flu season. It will also examine whether informing patients that their high-risk status was determined by analyzing their medical records or by an artificial intelligence (AI) / machine-learning (ML) algorithm analyzing their medical records will affect the likelihood of receiving the flu vaccine or diagnoses of flu and/or flu-like symptoms.
Detailed Description: Geisinger has partnered with Medial EarlySign and developed an ML algorithm to identify patients at risk for serious (moderate to severe) flu-associated complications on the basis of their existing electronic health record (EHR) data. Geisinger will apply this algorithm to current patients during the 2021-22 flu season. This study will evaluate the effect of contacting patients identified as high risk with special messages to encourage vaccination. These communications will inform patients they are at high risk with either (a) no additional explanation, (b) an explanation that this determination comes from an analysis of their medical records, along with a short list of the top factors from their medical record that explain their risk, and (c) the additional explanation that an AI or ML algorithm made this determination, along with a short list of the top factors from their medical record that explain their risk. Included in the study will be current Geisinger patients 18+ years of age with no contraindications for flu vaccine and who have been assessed by the Medial algorithm and assigned a risk score. The primary study outcomes will be the rates of flu vaccination and flu diagnosis during the 2020-21 season by targeted patients.
Study: NCT05009251
Study Brief:
Protocol Section: NCT05009251