Description Module

Description Module

The Description Module contains narrative descriptions of the clinical trial, including a brief summary and detailed description. These descriptions provide important information about the study's purpose, methodology, and key details in language accessible to both researchers and the general public.

Description Module path is as follows:

Study -> Protocol Section -> Description Module

Description Module


Ignite Creation Date: 2025-12-25 @ 12:36 AM
Ignite Modification Date: 2025-12-25 @ 12:36 AM
NCT ID: NCT06642467
Brief Summary: Using signals from consumer-grade PPG sensors on wrist wearables, smart rings or hearables, BGEM® AI model computes the relevant digital biomarkers correlated with the change of blood glucose level to predict a blood glucose result for monitoring and evaluating diabetic risks Ukrida in collaboration with Actxa \& Lif aims to enhance the current model's prediction accuracy to predict the blood glucose levels of individuals almost as accurately as a glucometer. To achieve this, Actxa aims to collect data from around 500 individuals with diabetes in this exercise and 400 healthy or undiagnosed (prediabetes/diabetes) individuals.
Detailed Description: Background Powered by our AI-driven algorithm, the Actxa's Blood Glucose Evaluation and Monitoring (BGEM®) is a cloud-based technology that enables wearables with photoplethysmography (PPG) sensors to monitor and evaluate diabetic risk of individuals regularly in a non-invasive way. Using signals from consumer-grade PPG sensors on wrist wearables, smart rings or hearables, BGEM® AI model computes the relevant digital biomarkers correlated with the change of blood glucose level to predict a blood glucose result for monitoring and evaluating diabetic risks. Our previous study has shown the potential of using PPG sensors to detect elevated blood glucose levels among a non-diabetic population1. Objective Ukrida in collaboration with Actxa \& Lif to enhance the current model's prediction accuracy to predict the blood glucose levels of individuals almost as accurately as a glucometer. To achieve this, Actxa aims to collect data from around 500 individuals with diabetes in this exercise and 400 healthy or undiagnosed (prediabetes/diabetes) individuals, as part of Actxa's collaboration with UKRIDA Hospital. With the data collected, our algorithm holds the potential to significantly improve the management of blood glucose levels for people with and without diabetes, ultimately enhancing their overall quality of life.
Study: NCT06642467
Study Brief:
Protocol Section: NCT06642467