Viewing Study NCT04815460


Ignite Creation Date: 2025-12-25 @ 2:16 AM
Ignite Modification Date: 2026-01-08 @ 11:16 AM
Study NCT ID: NCT04815460
Status: COMPLETED
Last Update Posted: 2021-03-25
First Post: 2021-03-22
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Aerobic Interval and Moderate Continuous Exercise Training on Ventricular Functions
Sponsor: Chang Gung Memorial Hospital
Organization:

Study Overview

Official Title: Aerobic Interval and Moderate Continuous Exercise Training on Ventricular Functions
Status: COMPLETED
Status Verified Date: 2021-03
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: Hypoxic exposure increases right ventricular (RV) afterload by triggering pulmonary hypertension, with consequent effects on the structure and function of the RV. Improved myocardial contractility is a critical circulatory adaptation to exercise training. However, the types of exercise that enhance right cardiac mechanics during hypoxic stress have not yet been identified. This study investigated how high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) influence right cardiac mechanics during hypoxic exercise (HE).
Detailed Description: Hypoxic exposure increases right ventricular (RV) afterload by triggering pulmonary hypertension, with consequent effects on the structure and function of the RV. Improved myocardial contractility is a critical circulatory adaptation to exercise training. However, the types of exercise that enhance right cardiac mechanics during hypoxic stress have not yet been identified. This study investigated how high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) influence right cardiac mechanics during hypoxic exercise (HE).

The young and healthy sedentary males were randomly selected to engage in either HIIT (3-min intervals at 40% and 80% of VO2 oxygen uptake reserve) or MICT (sustained 60% of VO2 oxygen uptake reserve) for 30 min/day and 5 days/week for 6 weeks or were included in a control group (CTL) that did not engage in any exercise. Right cardiac mechanics during semiupright bicycle exercise tests under hypoxic conditions (i.e., 50 watts under 12% FiO2 for 3 min) were measured using two-dimensional speckle-tracking echocardiography. The primary outcome was the change in right cardiac mechanics during semiupright bicycle exercise under hypoxic conditions (i.e., 50 watts under 12% FiO2 for 3 min) as measured by two-dimensional speckle tracking echocardiography.

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: