Viewing Study NCT06135961


Ignite Creation Date: 2025-12-24 @ 11:47 AM
Ignite Modification Date: 2026-01-07 @ 11:55 PM
Study NCT ID: NCT06135961
Status: RECRUITING
Last Update Posted: 2023-12-15
First Post: 2023-11-02
Is Gene Therapy: True
Has Adverse Events: False

Brief Title: Intrapartum Non-invasive Electrophysiological Monitoring
Sponsor: Maxima Medical Center
Organization:

Study Overview

Official Title: Implementation of Intrapartum Non-invasive Electrophysiological Monitoring
Status: RECRUITING
Status Verified Date: 2023-12
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: NIEM-II
Brief Summary: Conventional cardiotocography (CTG) has been used extensively for more than 50 years to monitor the fetal condition during labour, but since the rate of operative deliveries keeps rising, its ability to improve neonatal outcomes is unsatisfactory. A transabdominal non-invasive and wireless alternative which overcomes the shortcomings of conventional methods is electrophysiological CTG (eCTG) monitoring. In eCTG the fetal heart rate (FHR) is measured by fetal electrocardiography (NI-fECG) and uterine activity (UA) by electrohysterography (EHG). Both NI-fECG and EHG have been proven more accurate and reliable than conventional non-invasive methods and are less affected by maternal body mass index (BMI).

This study aims to evaluate the mode of delivery, maternal and perinatal outcomes, costs and patient and healthcare professionals perspectives on eCTG monitoring versus the conventional CTG during labour at term with a singleton fetus in cephalic position.

The eCTG provides a more accurate assessment of the fetus and the UA, compared to the conventional CTG. This allows for optimization of the contraction pattern during high-risk deliveries. We hypothesize that this will reduce the number of operative interventions and improves perinatal outcome. There are three reasons why an improvement in the contraction pattern by the eCTG can influence our outcomes:

1. EHG can detect excessive UA more accurately. Increased UA is a major risk for fetal distress. In this case, stimulation with oxytocin should be reduced or stopped. More adequate interpretation of FHR, reduced tachysystole and reduced hypertonia is expected to result in fewer instrumented vaginal deliveries and a reduction of caesarean sections due to fetal distress.
2. EHG can demonstrate unorganized UA that needs to be corrected with a higher dose of oxytocin to enhance contraction frequency and efficiency. This can result in a less exhausted uterine muscle, shorter time to delivery, less vacuum deliveries and caesarean sections due to failure of progress. A shorter time to delivery will also result in a reduction of infections and blood loss.
3. Accurate registration of the relation between the contraction and decelerations of FHR, is expected to result in more reliable assessment of the fetal condition. This can result in fewer unnecessary operative deliveries and less unpredictable poor perinatal outcomes.
Detailed Description: None

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: