Viewing Study NCT03100435


Ignite Creation Date: 2025-12-24 @ 10:06 PM
Ignite Modification Date: 2026-01-03 @ 5:38 PM
Study NCT ID: NCT03100435
Status: COMPLETED
Last Update Posted: 2023-03-31
First Post: 2017-03-29
Is NOT Gene Therapy: True
Has Adverse Events: True

Brief Title: Efficacy of Er:YAG Laser in Decontamination of Dental Implants: An In-Vitro Study
Sponsor: Tufts University
Organization:

Study Overview

Official Title: Efficacy of Er:YAG Laser in Decontamination of Dental Implants: An In-Vitro Study
Status: COMPLETED
Status Verified Date: 2023-03
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: The American Association of Oral and Maxillofacial Surgeons estimated that 69% of adults ages 35 to 44 have lost at least one permanent tooth. Dental implants have revolutionized dentistry by providing tooth-like replacement for missing teeth and a solution that is predictable with long-term success..

After the implant is placed, natural bacteria from the mouth can develop around implants just like around natural teeth. Studies have shown that bacterial contamination can cause peri-implantitis- gum disease or inflammation around the implant, eventually leading to bone loss. Removing bacteria from dental implant surfaces can prevent peri-implantitis, and surface debridement constitutes the basis of treatment of peri-implant disease.

Typically, mechanical hand instrumentation using curettes to remove biofilm and calculus is the main basis for periodontal therapy. However, total debridement is difficult, and the hand tools may damage the surface of the implant and making it more plaque retentive. Studies have shown that mechanical non-surgical therapy alone is not sufficient to treat peri-implantitis.

There is evidence that a dental laser may be an effective method to remove bacteria from implant surfaces, with less damage to the surface. One type of dental laser, Er:YAG, appears optimal for implant decontamination as the Er:YAG laser energy is primarily absorbed by water, resulting in vaporization of bacteria and minimal surface alterations on the implant surface.The aim of this study is to evaluate the efficiency of biofilm decontamination of Er:YAG laser compared to carbon fiber curette.
Detailed Description: The aim of this study is to compare the amount of residual biofilm on titanium discs after decontamination with Er:YAG laser and carbon fiber curette.

In the first phase of the study, custom mouth guards that holds multiple titanium discs will be fabricated. Experimental subjects will be instructed to wear this mouth guard for 72 hours, during which time a natural bacterial biofilm will form on the disc surfaces.

The second phase of the study will be performed ex vivo after collecting the discs from the subjects. Discs retrieved from each mouth guard will be randomized over the 4 treatment groups, so that each subject will contribute two discs to each treatment group: 1) Er:YAG laser, 2) carbon fiber curette, 3) combination of carbon fiber curette and Er:YAG laser, and 4) no treatment (control). The biofilm will be stained and the residual biofilm will be visualized under fluorescence microscopy. Statistical methods will be used to determine the significance of each treatment modality.

The primary outcome of the study is the percent area of the titanium disc covered by biofilm.

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: True
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: True
Is an FDA AA801 Violation?: