Viewing Study NCT06423469


Ignite Creation Date: 2025-12-24 @ 10:54 PM
Ignite Modification Date: 2025-12-30 @ 3:50 PM
Study NCT ID: NCT06423469
Status: COMPLETED
Last Update Posted: 2024-05-21
First Post: 2024-05-15
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Noninvasive Intracranial Pressure Waveforms Assessment in Traumatic Brain Injury
Sponsor: Sergio Brasil, MD
Organization:

Study Overview

Official Title: A Multicenter Observational Cohort for the Determination of Noninvasive Intracranial Pressure Waveforms Role in Traumatic Brain Injury
Status: COMPLETED
Status Verified Date: 2024-05
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: In clinical practice, hospital admission of patients with altered level of consciousness ranging from drowsiness to decreasing response states or coma is extremely common. This clinical condition demands effective investigation and early treatment. Imaging and laboratory tests have played increasingly relevant roles in supporting clinical research. One of the main causes of coma is intracranial hypertension (IH), with traumatic brain injuries (TBI) and cerebral hemorrhages being the major contributors to its development. IH increases the risk of secondary damage in these populations, and consequently, morbidity and mortality. Clinical studies show that adequate intracranial pressure (ICP) control in TBI patients reduces mortality and increases functionality. Unfortunately, the most accurate way to measure and evaluate the ICP is through a catheter located inside the skull, and its perforation is required for this purpose. Several studies have attempted to identify noninvasive solutions for ICP monitoring; however, to date, none of the techniques gathered sufficient evidence to replace invasive monitors. Recently, an extensometer device has been developed, which only maintains contact with the skull's skin and therefore eliminates the need for its perforation, being able to obtain recordings of cranial dilatation at each heartbeat and consequently reflecting brain compliance. In vivo studies have identified excellent qualitative correlation with catheter ICP recordings. However, this device was evaluated only in a limited number of clinical cohorts and the correlations between the information provided by this device with patients outcomes is still poor. Therefore, this project aims primarily to evaluate the use of this noninvasive brain compliance monitoring system in a cohort of TBI patients.
Detailed Description: None

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: False
Is an FDA AA801 Violation?: