Viewing Study NCT05822869


Ignite Creation Date: 2025-12-24 @ 11:08 PM
Ignite Modification Date: 2025-12-25 @ 8:41 PM
Study NCT ID: NCT05822869
Status: RECRUITING
Last Update Posted: 2025-06-17
First Post: 2023-04-10
Is NOT Gene Therapy: False
Has Adverse Events: False

Brief Title: Early PP Monitored by EIT in Patients With ARDS
Sponsor: Beijing Chao Yang Hospital
Organization:

Study Overview

Official Title: Early Prone Positioning Monitored by Electrical Impedance Tomography in Patients With Acute Respiratory Distress Syndrome
Status: RECRUITING
Status Verified Date: 2025-06
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: Acute Respiratory Distress Syndrome (ARDS) is a syndrome characterized by respiratory distress and refractory hypoxemia caused by pulmonary and extra-pulmonary factors. Despite improvements in diagnosis and treatment in recent years, the mortality rate of severe ARDS is still around 40%. The distribution of lung lesions in ARDS patients is significantly gravity-dependent. Even with lung-protective ventilation strategies, tidal volume is concentrated in the ventral lung region, leading to ventilator-associated lung injury. Prone position ventilation can increase ventilation to the dorsal lung tissue and improve the ventilation-perfusion ratio, thus improving oxygenation. During prone position ventilation in ARDS patients, lung-protective ventilation strategies should be maintained, but with different respiratory mechanics from the supine position, requiring adjustment of ventilator parameters. Electrical Impedance Tomography (EIT) technology can be used for bedside monitoring of mechanically ventilated patients, providing real-time feedback on the patient's ventilation status and having great potential for clinical applications. Investigators believes that EIT monitoring during prone position ventilation in ARDS patients can individualize lung-protective ventilation strategies, minimize alveolar overdistension and collapse, improve the weaning success rate of invasive ventilation, and ultimately improve patient prognosis.
Detailed Description: None

Study Oversight

Has Oversight DMC: True
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: False
Is an FDA AA801 Violation?: