Viewing Study NCT06593756


Ignite Creation Date: 2025-12-24 @ 11:15 PM
Ignite Modification Date: 2026-01-05 @ 5:19 PM
Study NCT ID: NCT06593756
Status: RECRUITING
Last Update Posted: 2025-09-29
First Post: 2024-05-03
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Hemodynamic Monitoring and Fluid Responsiveness in Venoarterial Extracorporeal Membrane Oxygenation (VA ECMO) - "HemodynamECMOnitoring-VA Study"
Sponsor: Medical University of Vienna
Organization:

Study Overview

Official Title: Validation of Techniques for Hemodynamic Monitoring and Prediction of Fluid Responsiveness in Patients Undergoing Venoarterial Extracorporeal Membrane Oxygenation - A Prospective Diagnostic Accuracy Study ("HemodynamECMOnitoring-VA Study")
Status: RECRUITING
Status Verified Date: 2025-09
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: In extracorporeal membrane oxygenation (ECMO), blood is drawn out of the body via tubes, oxygenated in an artificial lung; and then pumped back into the blood vessels. This allows the supply of oxygen-rich blood to the organs (brain, heart, lungs, kidneys, liver, intestines, etc.) to be maintained. Continuous monitoring of cardiac function and circulatory status (blood pressure, blood flow to organs) is very important in intensive care medicine in order to control the administration of circulation-supporting medication and infusions. Various devices are routinely used for this task. However, in the specific situation of ECMO treatment, the measurements of these devices could be affected due to the artificial circulation; outside the body. The purpose of this study is therefore to test the accuracy of different methods of circulation monitoring during ECMO treatment.
Detailed Description: Hemodynamic monitoring and tests for fluid responsiveness are cornerstones of intensive care medicine. Generally, hemodynamic measurements can be obtained, for instance, with the following methods: pulmonary artery catheter, transthoracic echocardiography (TTE), esophageal doppler, transpulmonary thermodilution, pulse contour analysis and bioreactance, amongst others. Maneuvers for assessing volume responsiveness include passive leg raising (PLR), respiratory pulse pressure variation (PPV), stroke volume variation (SVV), inferior vena cava ultrasound (IVC), and end-inspiratory or end-expiratory occlusion tests. While these commonly used methods of hemodynamic assessment have been validated in various clinical scenarios, data are lacking in the setting of venoarterial extracorporeal membrane oxygenation (VA ECMO). VA ECMO is commonly used for circulatory support in patients with severe hemodynamic failure or cardiac arrest. Blood is most commonly drained from a femoral vein, pumped through an oxygenator, where it is oxygenated and decarboxylated, and thereafter reinfused into the patient via an arterial, most commonly femoral, return cannula. Theoretically, the artificial circulation with its blood drainage and return flows may interfere with common hemodynamic monitoring techniques and lead to erroneous measurements. The aim of this study therefore is to validate select techniques of hemodynamic monitoring and assessment of fluid responsiveness in patients on VA ECMO. In the context of this study, the performance of different hemodynamic monitoring tools and techniques for predicting fluid responsiveness will be compared.

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: