Viewing Study NCT02416856


Ignite Creation Date: 2025-12-24 @ 11:17 PM
Ignite Modification Date: 2026-01-01 @ 9:32 AM
Study NCT ID: NCT02416856
Status: COMPLETED
Last Update Posted: 2018-05-14
First Post: 2015-04-07
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Brain Connectivity Supporting Language Recovery in Aphasia
Sponsor: Medical University of South Carolina
Organization:

Study Overview

Official Title: Brain Connectivity Supporting Language Recovery in Aphasia
Status: COMPLETED
Status Verified Date: 2018-05
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: The integrity of structural connectivity supporting cortical regions in the left brain hemisphere is hypothesized to enable treatment-induced naming recovery in persons with language difficulties after a stroke (aphasia). The investigators will map whole brain connectivity (i.e., the brain connectome) to investigate the role of cortical connectivity in impairment (Aim 1) and recovery (Aim 2) in patients with aphasia undergoing treatment. This information will be used to construct personalized markers of anomia treatment outcome (Aim 3), which may serve as a guide for speech-language pathologists and neurologists when facing patient management decisions.
Detailed Description: Aphasia, an impairment of language processing, is one of the most common consequences of strokes affecting the dominant brain hemisphere4. Patients with aphasia are usually incapable of working, and their interactions with family and friends are often severely affected. The hallmark deficit of aphasia is the inability to name objects or people (anomia)12. The severity of anomia is closely related to a poor quality of life.

While many patients with aphasia exhibit some language recovery in the first days to weeks after the stroke, 30-40% persist with long lasting naming impairments4. Fortunately, speech therapy can be very effective to improve naming for some patients with chronic aphasia5-8. However, it is well recognized among clinicians that speech therapy can be ineffective for other patients, making it difficult to predict how and why some patients benefit from naming treatment, while others show little or no improvement.

Here, the investigators propose to evaluate whether naming impairment and naming recovery are related to the extent of structural damage to the cortical language network. Importantly, the investigators will evaluate damage as the combined effect of cortical necrosis and cortical disconnection. The investigators hypothesize that assessing anomia as being either due to gray matter necrosis or due to cortical disconnection constitutes a false dichotomy since most chronic patients exhibit gray and white matter damage. Furthermore, the investigators propose that disconnection of seemingly spared cortical areas has up till now been underappreciated in patients with stroke due to limitations in brain connectivity assessment tools. By examining only areas of cortical necrosis without considering disconnected areas, one may underestimate the magnitude of language network damage. A better understanding of the effects from both cortical damage and disconnection on anomia and its recovery could lead to an improved clinical management of aphasia.

The investigators will employ the innovative concept of the brain connectome, i.e., the individualized map of neural connections in the brain, to evaluate whether naming recovery is supported by preserved gray matter and preserved connectivity involving key language areas in the left hemisphere. The investigators propose that left frontal and left temporal connectivity mapped based on the individual's connectome is an important explanatory variable towards naming impairment and recovery.

The investigators believe that this research is significant for the three main reasons. First, it can have a direct clinical impact by providing a better understanding of which patients can benefit from therapy. Second, it can unveil the neurobiological mechanisms supporting language recovery, improving our understanding of brain plasticity related to language rehabilitation. Finally, if disconnection contributes to language impairment, our methods can be developed to test specific theories of language organization in the brain. The significance of these aspects is explained in detail below.

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: None
Is a FDA Regulated Device?: None
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?:

Secondary ID Infos

Secondary ID Type Domain Link View
R01DC014021 NIH None https://reporter.nih.gov/quic… View