Viewing Study NCT02088151


Ignite Creation Date: 2025-12-24 @ 11:41 PM
Ignite Modification Date: 2026-01-16 @ 8:58 AM
Study NCT ID: NCT02088151
Status: TERMINATED
Last Update Posted: 2023-02-09
First Post: 2014-03-06
Is Gene Therapy: True
Has Adverse Events: False

Brief Title: Selective Retinal Pigment Epithelium Laser Therapy for Macular Disease of the Retina
Sponsor: Insel Gruppe AG, University Hospital Bern
Organization:

Study Overview

Official Title: Selective Retinal Pigment Epithelium Laser Therapy (SRT) for Macular Disease of the Retina
Status: TERMINATED
Status Verified Date: 2023-02
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Suitable device for laser no longer available
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: Laser photocoagulation of the retina targeting the outer layers is an established therapy for proliferative retinopathy and macular edema from diabetic microangiopathy or retinal vein occlusion, centrals serous retinopathy, and extrafoveal subretinal neovascular membranes. However, collateral damage occurs and scotomas can result when using conventional lasers with pulse duration of 100ms and more. This is particularly relevant for laser treatments of the macula where the main therapeutic effect results from stimulation of the retinal pigment epithelium cells and photoreceptor damage is thought to be an unnecessary side effect. Recent experimental research with new laser devices using much shorter pulse duration has shown that photoreceptor damage can be greatly reduced and the retinal pigment epithelium selectively targeted, hence the term selective retinal pigment epithelium laser therapy (SRT). Investigators hypothesize that SRT is equally effective as standard laser photocoagulation for macular disease but minimizes local visual field defects.

In this study, patients with central serous retinopathy, macular edema from diabetic microangiopathy or branch vein occlusion, and non-exudative age-related macular degeneration will be treated with SRT. Patients will be assessed 1, 3 and 6 months after treatment.
Detailed Description: Background

Laser photocoagulation of the retina targeting the outer layers is an established therapy for proliferative retinopathy and macular edema from diabetic microangiopathy or retinal vein occlusion, centrals serous retinopathy, and extrafoveal subretinal neovascular membranes. However, collateral damage occurs and scotomas can result when using conventional lasers with pulse duration of 100ms and more. This is particularly relevant for laser treatments of the macula where the main therapeutic effect results from stimulation of the retinal pigment epithelium cells and photoreceptor damage is thought to be an unnecessary side effect. Recent experimental research with new laser devices using much shorter pulse duration has shown that photoreceptor damage can be greatly reduced and the retinal pigment epithelium selectively targeted, hence the term selective retinal pigment epithelium laser therapy (SRT). In age-related macular degeneration, regression of drusen has been observed after laser treatment with convention laser or SRT. Investigators hypothesize that SRT is equally effective as standard laser photocoagulation for macular disease but minimizes local visual field defects.

Objective

To assess the efficacy of SRT in patients with central serous retinopathy, macular edema from diabetic microangiopathy or branch vein occlusion, and non-exudative age-related macular degeneration. Up to five patients with proliferative diabetic retinopathy can optionally be treated with SRT too.

Methods

At baseline and during follow-up patients will receive a full ophthalmic examination including optical coherence tomography, fundus autofluorescence imaging, fluorescein angiography (FA), and visual acuity testing. SRT (R:GEN Laser System by Lutronic Corporation, Korea) will be delivered under topical anesthesia. For titration of energy spots will first be applied outside the major arcades. Immediately thereafter FA will be performed for extrapolation of the laser dose, since the treatment is sub-threshold and laser spots will not be visible biomicroscopically. The patient will then be treated at the discretion of the ophthalmologist with up to 500 laser burns. One hour after the laser treatment FA will be repeated to confirm the treatment effect. Patients will be assessed 1, 3 and 6 months after treatment. Pulse duration can be chosen between 200ns and 2μs. The maximum pulse energy will be 1mJ. 1-30 pulses will be applied for every laser burn at a frequency of 100Hz.

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: None
Is a FDA Regulated Device?: None
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?:

Secondary ID Infos

Secondary ID Type Domain Link View
2011-MD-0006 OTHER Swissmedic View