Viewing Study NCT03632551


Ignite Creation Date: 2025-12-24 @ 11:49 PM
Ignite Modification Date: 2026-01-03 @ 5:12 PM
Study NCT ID: NCT03632551
Status: UNKNOWN
Last Update Posted: 2023-08-23
First Post: 2018-07-19
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Localization and Mismatch Negativity
Sponsor: University Hospital, Toulouse
Organization:

Study Overview

Official Title: Localization and Mismatch Negativity in Subjects With Single-sided Deafness Ads Subjects With Unilateral Cochlear Implant
Status: UNKNOWN
Status Verified Date: 2023-08
Last Known Status: RECRUITING
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: MMNLocA
Brief Summary: This descriptive and observational research project aims to characterize MMN as a neuronal marker of localization deficit in single-sided deafened subjects and subjects with bilateral profound deafness treated by a cochlear implant (CI). It includes several electro-physiological and psychoacoustic assessments performed on subjects with single-sided deafness and cochlear implanted subjects, with normal-hearing subjects as control:

* Evaluation of the characteristics of the MMN involved in sound localization by EEG.
* Evaluation of the spatial localization abilities for a sound source presented in the open field.
* Assessment of performance for speech recognition in noise. These evaluations are performed in subjects with symmetrical hearing, in a natural binaural condition and a monaural condition (with a plugged ear), in subjects with single-sided deafness and in subjects with unilateral CI
Detailed Description: Sound localization is the primary function of binaural hearing and facilitates speech recognition in noise. In case of unilateral or asymmetrical hearing loss, speech recognition in noise requires a constant adaptation of the head position to compensate for deafness. There is a significant impact of these deficits for socio-professional integration with a globally reduced quality of life . A researcher has found a significant correlation between performance for speech recognition in noise and the level of quality of life level assessed by a Spatial and Qualitative Hearing Scale (SSQ).

Subjects with bilateral profound deafness treated with cochlear implant (CI) usually recover excellent scores for speech recognition in quiet conditions. Nevertheless, hearing restoration is only partial and binaural hearing includes the fields where hearing remains impaired, as illustrated by the studies on sound localization or speech recognition in noise.

Studies using functional MRI, MEG or EEG to investigate neuro-functional reorganization following single-sided deafness show a reduced asymmetry in the hemispherical processing of auditory information, documented by an increase of cortical activity ipsilateral to the better ear, whether it is lateralized to right or left. However, the neural modifications underlying spatial hearing processing have hardly not been explored.

The mismatch negativity (MMN) is a specific potential, evoked by an auditory stimulation using two sounds almost similar. The presence of this MMN indicates that the auditory system is able to discriminate these 2 sounds, regardless of the subjective feedback reported by the subject.

The use of MMN to describe neural reorganization following cochlear implantation is expanding. Stimuli as diverse as pure sounds, tonal bursts or phonemes may be used, but to the investigator's knowledge there is no study investigating localization processes

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: