Viewing Study NCT01019993


Ignite Creation Date: 2025-12-25 @ 1:02 AM
Ignite Modification Date: 2025-12-25 @ 11:16 PM
Study NCT ID: NCT01019993
Status: COMPLETED
Last Update Posted: 2010-05-28
First Post: 2009-11-24
Is NOT Gene Therapy: False
Has Adverse Events: False

Brief Title: Non-dependent Lung High Frequency Positive Pressure Ventilation (HFPPV) and Right Ventricular Function
Sponsor: King Faisal University
Organization:

Study Overview

Official Title: Prospective Study of the Effects of Non-dependent Lung High Frequency Positive Pressure Ventilation on the Right Ventricular Function for Thoracotomy
Status: COMPLETED
Status Verified Date: 2010-05
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: The investigators hypothesized that the application of volume-controlled HFPPV to the non-dependent lung during one-lung ventilation (OLV) for thoracotomy in patients with good pulmonary functions and mild-to-moderate pulmonary dysfunction may provide preservation of the right ventricular (RV) function, adequate oxygenation and optimum surgical conditions.

The investigators evaluated the effects of IL-HFPPV on RV ejection fraction (REF), RV end-diastolic volume (RVEDVI), RV stroke work (RVSWI), pulmonary vascular resistance (PVRI), and stroke volume (SVI) indices, oxygen delivery (DO2) and uptake (VO2), shunt fraction (Qs: Qt), and surgical field conditions during OLV for thoracotomy in patients with good and mild-to-moderate impaired pulmonary functions.
Detailed Description: One-lung ventilation (OLV) provides an adequate operative field, but is opposed by the induced hypoxic pulmonary vasoconstriction (HPV) in the non-ventilated lung. It may preserve overall oxygen delivery, however with deleterious increase in shunt fraction and pulmonary vascular resistance.1-2Right ventricular (RV) overload resulting from these increases in its afterload influences postoperative morbidity and mortality. Intrinsic positive end-expiratory pressure (PEEPi) occurs frequently during OLV for thoracic surgery in the dependent lung of patients with pulmonary hyperinflation as opposed to patients with normal pulmonary function.3 The different approaches for the correction of hypoxemia during OLV may require some degree of recruitment of the non-dependent lung (IL), with different maneuvers such as the application of continuous positive pressure ventilation (CPAP) or high frequency jet ventilation (HFJV) to the non-dependent lung. These recruitment strategies, although they may improve arterial saturation, may concurrently decrease cardiac output, therefore having contradictory effects on overall oxygen delivery.4-6 Gas trapping may occur with increased ventilatory frequency during HFJV. This may impair RVEF through the increases in RV afterload.7 Therefore, the use of high frequency positive pressure ventilation (HFPPV) using tidal volumes just greater than the dead space increases arterial oxygen tension (PaO2) and the carbon dioxide excretion (VCO2) linearly with increasing peak airway pressure.8 We hypothesized that the application of volume-controlled HFPPV to the non-dependent lung during OLV for thoracotomy in patients with good pulmonary functions and mild-to-moderate pulmonary dysfunction may provide preservation of the RV function, adequate oxygenation and optimum surgical conditions.

We evaluated the effects of IL-HFPPV on RV ejection fraction (REF), RV end-diastolic volume (RVEDVI), RV stroke work (RVSWI), pulmonary vascular resistance (PVRI), and stroke volume (SVI) indices, oxygen delivery (DO2) and uptake (VO2), shunt fraction (Qs: Qt), and surgical field conditions during OLV for thoracotomy in patients with good and mild-to-moderate impaired pulmonary functions.

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: None
Is a FDA Regulated Device?: None
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: