Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D019965', 'term': 'Neurocognitive Disorders'}, {'id': 'D000544', 'term': 'Alzheimer Disease'}, {'id': 'D019964', 'term': 'Mood Disorders'}], 'ancestors': [{'id': 'D001523', 'term': 'Mental Disorders'}, {'id': 'D003704', 'term': 'Dementia'}, {'id': 'D001927', 'term': 'Brain Diseases'}, {'id': 'D002493', 'term': 'Central Nervous System Diseases'}, {'id': 'D009422', 'term': 'Nervous System Diseases'}, {'id': 'D024801', 'term': 'Tauopathies'}, {'id': 'D019636', 'term': 'Neurodegenerative Diseases'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 100}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'RECRUITING', 'startDateStruct': {'date': '2023-07-13', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2024-09', 'completionDateStruct': {'date': '2025-10-10', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2024-09-05', 'studyFirstSubmitDate': '2023-07-05', 'studyFirstSubmitQcDate': '2023-07-05', 'lastUpdatePostDateStruct': {'date': '2024-09-19', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2023-07-13', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2025-10-10', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Build and validate speech-based machine learning models for relevant Phenotype detection through access to phenotyped patients from reference memory center.', 'timeFrame': '20 minutes', 'description': 'Speech biomarker algorithm(s)'}]}, 'oversightModule': {'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ["Alzheimer's disease", 'Mood disorder'], 'conditions': ['Neurocognitive Disorders']}, 'descriptionModule': {'briefSummary': "PLATA aims to develop an algorithm to identify vocal biomarkers of Alzheimer's dementia.\n\nUsing data collected as part of routine care, speech patterns will be compared to known biomarkers of Alzheimer's disease, such as amyloid 1-42 and p-Tau in CSF (cerebrospinal fluid).\n\nIf biomarkers of speech can be identified in Alzheimer's disease, it is possible that patients and research participants will no longer need to undergo need to undergo the intensive and invasive baseline biomarker methods currently used, such as lumbar punctures and PET scans."}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'maximumAge': '100 Years', 'minimumAge': '50 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': "Participants will be recruited through the Memory Clinic at the Geriatric Hospital in Nice (Centre de Mémoire de Ressources et de Recherche, CHU de Nice, Institut Claude Pompidou 10 rue Molière, 06 100 NICE) with a minor or major neurocognitive disorder whose etiology is either:\n\n* Probable Alzheimer's disease (positive AD biomarkers)\n* Mood disorder\n* Not related to a mood disorder and with negative AD biomarkers", 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Age ≥ 50 years\n* Diagnosis relevant biomarker and neuropsychological data already available\n* Cognitively healthy to very mild dementia (CDR score max. 0.5)\n* Sufficient knowledge of the study language to understand study information, non opposition form,and questionnaires\n* Expression of non opposition\n\nExclusion Criteria:\n\n* Hearing problems\n* Patient protected by law, under guardianship or curator ship, or not able to participate in a clinical study according to the article L.1121-16 of the French Public Health Code'}, 'identificationModule': {'nctId': 'NCT05943834', 'acronym': 'PLATA', 'briefTitle': "Early Detection of Alzheimer's Disease and Affective Disorders by Automated Voice and Speech Analysis (PLATA)", 'organization': {'class': 'OTHER', 'fullName': 'Centre Hospitalier Universitaire de Nice'}, 'officialTitle': "Early Detection of Alzheimer's Disease and Affective Disorders by Automated Voice and Speech Analysis", 'orgStudyIdInfo': {'id': '23-PP-03'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'Patients with a minor or major neurocognitive disorder', 'description': 'Every patient will receive one semi-automated phone call, during the call a series of cognitive tasks will be performed.\n\nEach task will be recorded in a secondary audio stream which records the participant responses to allow for deep speech analysis of performance on these tasks', 'interventionNames': ['Other: Series of cognitive tasks during a semi-automated call']}], 'interventions': [{'name': 'Series of cognitive tasks during a semi-automated call', 'type': 'OTHER', 'description': 'Tasks:\n\n* Verbal learning recall (immediate) or Story Recall task (immediate)\n* Narrative Storytelling /free speech\n* Verbal fluency task\n* Verbal learning recall (delayed) or Story Recall task (delayed)', 'armGroupLabels': ['Patients with a minor or major neurocognitive disorder']}]}, 'contactsLocationsModule': {'locations': [{'zip': '06100', 'city': 'Nice', 'status': 'RECRUITING', 'country': 'France', 'contacts': [{'name': 'Lemaire Justine', 'role': 'CONTACT'}, {'name': 'Foussat Valérie', 'role': 'CONTACT'}, {'name': 'Alexandra Konig', 'role': 'SUB_INVESTIGATOR'}], 'facility': 'CHU de Nice', 'geoPoint': {'lat': 43.70313, 'lon': 7.26608}}], 'centralContacts': [{'name': 'Eric ETTORE, MD', 'role': 'CONTACT', 'email': 'ettore.e@chu-nice.fr', 'phone': '04.92.03.47.70'}], 'overallOfficials': [{'name': 'Eric ETTORE, MD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Centre Hospitalier Universitaire de Nice'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Centre Hospitalier Universitaire de Nice', 'class': 'OTHER'}, 'responsibleParty': {'type': 'SPONSOR'}}}}