Viewing Study NCT04117802


Ignite Creation Date: 2025-12-25 @ 4:03 AM
Ignite Modification Date: 2026-01-24 @ 3:16 AM
Study NCT ID: NCT04117802
Status: COMPLETED
Last Update Posted: 2024-04-15
First Post: 2019-09-30
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Effects of Maple Syrup on Gut Microbiota Diversity and Metabolic Syndrome
Sponsor:
Organization:

Raw JSON

{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D050177', 'term': 'Overweight'}, {'id': 'D019446', 'term': 'Endotoxemia'}, {'id': 'D024821', 'term': 'Metabolic Syndrome'}, {'id': 'D065626', 'term': 'Non-alcoholic Fatty Liver Disease'}, {'id': 'D007333', 'term': 'Insulin Resistance'}], 'ancestors': [{'id': 'D044343', 'term': 'Overnutrition'}, {'id': 'D009748', 'term': 'Nutrition Disorders'}, {'id': 'D009750', 'term': 'Nutritional and Metabolic Diseases'}, {'id': 'D001835', 'term': 'Body Weight'}, {'id': 'D012816', 'term': 'Signs and Symptoms'}, {'id': 'D013568', 'term': 'Pathological Conditions, Signs and Symptoms'}, {'id': 'D016470', 'term': 'Bacteremia'}, {'id': 'D018805', 'term': 'Sepsis'}, {'id': 'D007239', 'term': 'Infections'}, {'id': 'D014115', 'term': 'Toxemia'}, {'id': 'D018746', 'term': 'Systemic Inflammatory Response Syndrome'}, {'id': 'D007249', 'term': 'Inflammation'}, {'id': 'D010335', 'term': 'Pathologic Processes'}, {'id': 'D006946', 'term': 'Hyperinsulinism'}, {'id': 'D044882', 'term': 'Glucose Metabolism Disorders'}, {'id': 'D008659', 'term': 'Metabolic Diseases'}, {'id': 'D005234', 'term': 'Fatty Liver'}, {'id': 'D008107', 'term': 'Liver Diseases'}, {'id': 'D004066', 'term': 'Digestive System Diseases'}]}}, 'protocolSection': {'designModule': {'phases': ['NA'], 'studyType': 'INTERVENTIONAL', 'designInfo': {'allocation': 'RANDOMIZED', 'maskingInfo': {'masking': 'QUADRUPLE', 'whoMasked': ['PARTICIPANT', 'CARE_PROVIDER', 'INVESTIGATOR', 'OUTCOMES_ASSESSOR']}, 'primaryPurpose': 'PREVENTION', 'interventionModel': 'CROSSOVER'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 47}}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2019-09-03', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2024-04', 'completionDateStruct': {'date': '2021-12-01', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2024-04-11', 'studyFirstSubmitDate': '2019-09-30', 'studyFirstSubmitQcDate': '2019-10-03', 'lastUpdatePostDateStruct': {'date': '2024-04-15', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2019-10-07', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2021-12-01', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Change in Glucose homeostasis', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Evaluation of plasma glucose, insulin and c-peptide concentration using a 3-hour oral glucose tolerance test'}], 'secondaryOutcomes': [{'measure': 'Change in Endotoxemia', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Plasma Lipopolysaccharides (LPS) and Lipopolysaccharide Binding Protein (LBP)'}, {'measure': 'Change in Intestinal permeability', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Plasma zonulin'}, {'measure': 'Change in Inflammation state of the tissue', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Fecal calprotectin and chromogranin'}, {'measure': 'Change in Short chain fatty acids in the feces', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Measure short chain fatty acids in the feces'}, {'measure': 'Change in Gut health and stool consistency', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Evaluation of gastrointestinal symptoms and stool consistency using standardized questionnaires (the gastrointestinal symptom rating scale (GSRS) and Bristol stool chart)'}, {'measure': 'Change in fat accumulation in the liver', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Evaluation of fat accumulation by magnetic resonance imaging (MRI)'}, {'measure': 'Change in Glucose homeostasis', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Evaluation of glycated haemoglobin'}, {'measure': 'Change in Lipid profile', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Evaluation of plasma triglycerides (TG), Total cholesterol, LDL, HDL, Apolipoprotein B and free fatty acids end of two dietary treatment'}, {'measure': 'Change in anthropometric measurements', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Evaluation of bmi with weight and height measurements'}, {'measure': 'Change in anthropometric measurements', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Evaluation of waist circumference'}, {'measure': 'Change in body composition', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Evaluation of body composition by osteodensitometry'}, {'measure': 'Change in chronic inflammation', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Evaluation of plasma high sensitive C-Reactive Protein (hs-CRP)'}, {'measure': 'Change in gene expression levels', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Transcriptomic analyses to investigate underlying mechanisms of action'}, {'measure': 'Change in circulating levels of plasma metabolites', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Metabolomic analyses to investigate underlying mechanisms of action'}, {'measure': 'Change in maple-derived metabolites present in stool', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Evaluation of metabolome: camu-camu derived metabolites, short chain fatty acids, branched chain fatty acids, bile acids, phenolic compounds'}, {'measure': 'Change in blood pressure', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Evaluation of systolic and diastolic blood pressure'}, {'measure': 'Change in Gut Microbiota Composition', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Gut microbiota composition will be evaluated by 16S rRNA amplicon sequencing (V3-V4 region)'}, {'measure': 'Change in Gut Microbiota Composition', 'timeFrame': 'Change between the beginning and the end of maple syrup treatment (8 weeks)', 'description': 'Gut microbiota composition will also be evaluated by whole genome sequencing'}, {'measure': 'Change in Gut Microbiota alpha Diversity', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': "To quantify bacterial alpha diversity, Shannon's reciprocal index will be calculated"}, {'measure': 'Change in Gut Microbiota alpha Diversity', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': "To quantify bacterial alpha diversity, Simpson's reciprocal index will be calculated"}, {'measure': 'Change in Gut Microbiota beta Diversity', 'timeFrame': 'Change between the beginning and the end of each treatment (8 weeks each)', 'description': 'Principal component analysis (PCA) will be performed on the Aitchison distance matrix to measure beta diversity.'}]}, 'oversightModule': {'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'conditions': ['Overweight', 'Microbiota', 'Endotoxemia', 'Metabolic Syndrome', 'Non-Alcoholic Fatty Liver Disease', 'Insulin Resistance']}, 'referencesModule': {'references': [{'pmid': '39163971', 'type': 'DERIVED', 'citation': 'Morissette A, Agrinier AL, Gignac T, Ramadan L, Diop K, Marois J, Varin TV, Pilon G, Simard S, Larose E, Gagnon C, Arsenault BJ, Despres JP, Carreau AM, Vohl MC, Marette A. Substituting Refined Sugars With Maple Syrup Decreases Key Cardiometabolic Risk Factors in Individuals With Mild Metabolic Alterations: A Randomized, Double-Blind, Controlled Crossover Trial. J Nutr. 2024 Oct;154(10):2963-2975. doi: 10.1016/j.tjnut.2024.08.014. Epub 2024 Aug 18.'}]}, 'descriptionModule': {'briefSummary': 'It has been suggested that the actual obesity epidemy is related to chronic overconsumption of added or free sugars. The increasing popularity of artificial sweeteners attest the population willingness to reduce added sugars intake and to use alternatives to alleviate health impact of free sugar overconsumption. However, recent findings suggest that artificial sweeteners may rather contribute to obesity epidemy and its associated adverse health effects, potentially via a negative impact on gut microbiota. It has been shown in various studies that, for the same amount of sucrose, unrefined sugars (such as maple syrup) are associated with favorable metabolic effects. The polyphenols contained in maple syrup, especially lignans, could contribute to these positive effects. Indeed, the strong impact of those biomolecules on the modulation of gut microbiota and on gastro-intestinal and metabolic health has been demonstrated in several studies. It is therefore highly relevant to test the hypothesis that the substitution of refined sugar by an equivalent amount of maple syrup (5% of daily energy intake) result in a lesser metabolic deterioration, by the modulation of maple syrup on gut microbiota, than the one observed with refined sugar.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'maximumAge': '75 Years', 'minimumAge': '18 Years', 'healthyVolunteers': True, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* BMI between 23 and 40 kg/m2\n* At least one of the following: Fasting triglyceride \\> 1,35 mmol/L, Fasting insulinemia \\> 42 pmol/L, fasting glycemia between 5,5 and 6,9 mmol/L and glycated haemoglobin (HbA1c) between 5.7 and 6.4 %\n* Understanding of spoken and written french\n* Accept to follow study instructions\n* If there is natural health product consumption, the dose and frequency of consumption must be stable since 3 months or more\n\nExclusion Criteria:\n\n* Smoking\n* Any metabolic disorder requiring medication or affecting glucose or lipid metabolism\n* Aversion for maple taste\n* Allergy or intolerance for maple syrup or for an ingredient of the placebo syrup\n* Alcohol consumption of \\> 2 drinks / day\n* Weight change \\> 5% of body weight in the last 3 months\n* Being in a weight loss attempt\n* Antibiotics intake in the last 3 months\n* Regular probiotics intake in the last 3 months\n* Major surgical operation in the last 3 months or planned in the next months\n* Gastrointestinal malabsorption\n* Cirrhosis\n* Chronic kidney disease\n* Pregnant or breastfeeding women or women planning pregnancy in the next months\n* Participation in another clinical trial'}, 'identificationModule': {'nctId': 'NCT04117802', 'briefTitle': 'Effects of Maple Syrup on Gut Microbiota Diversity and Metabolic Syndrome', 'organization': {'class': 'OTHER', 'fullName': 'Laval University'}, 'officialTitle': 'Impact of Free Sugar Replacement by Maple Syrup on Prevention of Metabolic Disorders Associated With Overweight in Humans : Role of Gut Microbiota', 'orgStudyIdInfo': {'id': 'ERABLE-21793'}}, 'armsInterventionsModule': {'armGroups': [{'type': 'EXPERIMENTAL', 'label': 'Maple', 'interventionNames': ['Other: Maple syrup']}, {'type': 'PLACEBO_COMPARATOR', 'label': 'Placebo', 'interventionNames': ['Other: Placebo']}], 'interventions': [{'name': 'Maple syrup', 'type': 'OTHER', 'description': 'Substitution of refined sugar by an equivalent quantity of maple syrup (5% of daily energy intake) in the participant diet. A dietitian will help study subjects to target added sugar sources in their usual diet and suggest ways to substitute it with maple syrup.', 'armGroupLabels': ['Maple']}, {'name': 'Placebo', 'type': 'OTHER', 'description': 'Substitution of refined sugar by an equivalent quantity of maple-flavored sucrose syrup (5% of daily energy intake) in the participant diet. A dietitian will help study subjects to target added sugar sources in their usual diet and suggest ways to substitute it with the placebo (sucrose syrup).', 'armGroupLabels': ['Placebo']}]}, 'contactsLocationsModule': {'locations': [{'zip': 'G1V 0A6', 'city': 'Québec', 'country': 'Canada', 'facility': 'INAF, Université Laval', 'geoPoint': {'lat': 46.81228, 'lon': -71.21454}}]}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Laval University', 'class': 'OTHER'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Professor', 'investigatorFullName': 'André Marette', 'investigatorAffiliation': 'Laval University'}}}}