Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}}, 'protocolSection': {'designModule': {'phases': ['PHASE4'], 'studyType': 'INTERVENTIONAL', 'designInfo': {'allocation': 'RANDOMIZED', 'maskingInfo': {'masking': 'NONE'}, 'primaryPurpose': 'TREATMENT', 'interventionModel': 'PARALLEL'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 80}}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2014-01'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2014-12', 'completionDateStruct': {'date': '2014-07', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2014-12-02', 'studyFirstSubmitDate': '2013-12-09', 'studyFirstSubmitQcDate': '2013-12-11', 'lastUpdatePostDateStruct': {'date': '2014-12-03', 'type': 'ESTIMATED'}, 'studyFirstPostDateStruct': {'date': '2013-12-12', 'type': 'ESTIMATED'}, 'primaryCompletionDateStruct': {'date': '2014-07', 'type': 'ACTUAL'}}, 'outcomesModule': {'otherOutcomes': [{'measure': 'Influence of CYP3A5 genotyping', 'timeFrame': '8 to 12 weeks post-transplant', 'description': 'The model will be run without any information about patients CYP3A5 genotype as this is not clinical praxis at our center yet. All patients will however be genotyped after the study and a model including this covariate will be used to recalculate the data and see if this model is superior to the simple model, primary by comparing predictive errors in the computer arm.'}], 'primaryOutcomes': [{'measure': 'Predictive error (Cpred-Cobs)', 'timeFrame': '8 to 12 weeks', 'description': 'Predictive error will be calculated as the computer predicted concentration minus the measured concentration over the first 8 to 12 weeks post-transplant in the computer group. The calculations will be binned into weekly assessments.'}, {'measure': 'Reaching the target concentration', 'timeFrame': '8 to 12 weeks post-transplant', 'description': 'In each arm the deviation of the observed concentration front he preset target concentration will be calculated for each measured concentration. The deviations will be compared between the two arms.'}]}, 'oversightModule': {'oversightHasDmc': False}, 'conditionsModule': {'keywords': ['population model', 'pharmacokinetic', 'tacrolimus', 'therapeutic drug monitoring', 'individualized dosing'], 'conditions': ['Renal Transplantation']}, 'referencesModule': {'references': [{'pmid': '25886918', 'type': 'DERIVED', 'citation': 'Storset E, Asberg A, Skauby M, Neely M, Bergan S, Bremer S, Midtvedt K. Improved Tacrolimus Target Concentration Achievement Using Computerized Dosing in Renal Transplant Recipients--A Prospective, Randomized Study. Transplantation. 2015 Oct;99(10):2158-66. doi: 10.1097/TP.0000000000000708.'}]}, 'descriptionModule': {'briefSummary': 'Dosing of tacrolimus is challenging due to the large inter-individual variation in its pharmacokinetics. The investigators have developed a pharmacokinetics population model that can be used to estimate individual doses of tacrolimus in renal transplant recipients. The model will be prospective tested in a randomized clinical trial.\n\nThe hypothesis is that the computer model is superior to experienced transplant physicians in reaching and keeping the patients in the target range of tacrolimus.', 'detailedDescription': 'Patients will be randomized to either computer or standard dosing strategies at time of transplantation or as early after transplantation as possible in case of deceased donor transplants.\n\nFor patients in the computer arm the model will calculate the dose with the highest probability to reach the specified concentration target.\n\nFor all concentrations a predictive error will be calculated and this will be the primary endpoint that the statistics will be calculated on.\n\nAll patients will be followed for between 8 to 12 weeks post-transplant, according to center praxis.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* renal transplant recipients using tacrolimus as part of their immunosuppression\n* above 18 years\n* signed informed consent\n\nExclusion Criteria:\n\n* no specific'}, 'identificationModule': {'nctId': 'NCT02010320', 'acronym': 'OPTIMAL', 'briefTitle': 'Computer Guided Doing of Tacrolimus in Renal Transplantation', 'organization': {'class': 'OTHER', 'fullName': 'University of Oslo School of Pharmacy'}, 'officialTitle': 'Prospective Testing of Pharmacokinetic Population Models for Dosing of Transplanted Patients', 'orgStudyIdInfo': {'id': 'OPTIMAL-13'}}, 'armsInterventionsModule': {'armGroups': [{'type': 'EXPERIMENTAL', 'label': 'Computer dosed', 'description': 'Patients for which the computer model will calculate the individual doses', 'interventionNames': ['Other: Computer dosing']}, {'type': 'ACTIVE_COMPARATOR', 'label': 'Control', 'description': 'Patients which will get their tacrolimus doses determined by experience transplant physicians', 'interventionNames': ['Other: Standard dose determination']}], 'interventions': [{'name': 'Computer dosing', 'type': 'OTHER', 'description': 'Pharmacokinetic population model for individual dose estimations of tacrolimus based on concentrations measurements and inclusion of relevant covariates', 'armGroupLabels': ['Computer dosed']}, {'name': 'Standard dose determination', 'type': 'OTHER', 'description': 'Tacrolimus dose determination according to trough concentrations and standard TDM at the clinic', 'armGroupLabels': ['Control']}]}, 'contactsLocationsModule': {'locations': [{'zip': '0424', 'city': 'Oslo', 'country': 'Norway', 'facility': 'Olso university hospital - Rikshospitalet', 'geoPoint': {'lat': 59.91273, 'lon': 10.74609}}], 'overallOfficials': [{'name': 'Anders Åsberg, PhD', 'role': 'STUDY_CHAIR', 'affiliation': 'OUS-Rikshospitalet and University of Oslo'}]}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'University of Oslo School of Pharmacy', 'class': 'OTHER'}, 'collaborators': [{'name': 'Rikshospitalet University Hospital', 'class': 'OTHER'}], 'responsibleParty': {'type': 'SPONSOR'}}}}