Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D001943', 'term': 'Breast Neoplasms'}], 'ancestors': [{'id': 'D009371', 'term': 'Neoplasms by Site'}, {'id': 'D009369', 'term': 'Neoplasms'}, {'id': 'D001941', 'term': 'Breast Diseases'}, {'id': 'D012871', 'term': 'Skin Diseases'}, {'id': 'D017437', 'term': 'Skin and Connective Tissue Diseases'}]}, 'interventionBrowseModule': {'meshes': [{'id': 'D000073890', 'term': 'Liquid Biopsy'}, {'id': 'D000081364', 'term': 'Multiparametric Magnetic Resonance Imaging'}], 'ancestors': [{'id': 'D001706', 'term': 'Biopsy'}, {'id': 'D003581', 'term': 'Cytodiagnosis'}, {'id': 'D003584', 'term': 'Cytological Techniques'}, {'id': 'D019411', 'term': 'Clinical Laboratory Techniques'}, {'id': 'D019937', 'term': 'Diagnostic Techniques and Procedures'}, {'id': 'D003933', 'term': 'Diagnosis'}, {'id': 'D013048', 'term': 'Specimen Handling'}, {'id': 'D008919', 'term': 'Investigative Techniques'}, {'id': 'D008279', 'term': 'Magnetic Resonance Imaging'}, {'id': 'D014054', 'term': 'Tomography'}, {'id': 'D003952', 'term': 'Diagnostic Imaging'}]}}, 'protocolSection': {'designModule': {'phases': ['NA'], 'studyType': 'INTERVENTIONAL', 'designInfo': {'allocation': 'NA', 'maskingInfo': {'masking': 'NONE'}, 'primaryPurpose': 'OTHER', 'interventionModel': 'SINGLE_GROUP'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 61}}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2019-01-02', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2023-12', 'completionDateStruct': {'date': '2022-05-16', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2023-12-21', 'studyFirstSubmitDate': '2019-12-20', 'studyFirstSubmitQcDate': '2020-01-08', 'lastUpdatePostDateStruct': {'date': '2023-12-28', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2020-01-10', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2022-05-16', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Residual Cancer Burden index in surgical resection specimen', 'timeFrame': 'After neoadjuvant treatment and surgery (approx. 6 months from diagnosis)', 'description': 'The following parameters are required from pathologic examination in order to calculate Residual Cancer Burden (RCB) after neoadjuvant treatment: Primary tumor bed area, overall cancer cellularity (as percentage of area), percentage of cancer that is in situ disease, number of positive lymph nodes and diameter of largest metastasis. These parameters are filled in in the calculator that is available online to calculate the Residual Cancer Burden index: http://www3.mdanderson.org/app/medcalc/index.cfm?pagename=jsconvert3'}], 'secondaryOutcomes': [{'measure': 'Radiological lesion volume on DCE MRI after NAC', 'timeFrame': 'After neoadjuvant treatment (approx. 6 months from diagnosis)', 'description': 'Measured in three dimensions as described in ACR BI-RADS Atlas® 5th Edition'}, {'measure': 'pathological complete response, defined as ypT0/ypN0', 'timeFrame': 'After neoadjuvant treatment and surgery (approx. 6 months from diagnosis)', 'description': 'Pathological complete response, defined as ypT0/ypN0'}]}, 'oversightModule': {'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['Breast Cancer', 'Neoadjuvant', 'Response Prediction', 'Liquid Biopsies', 'Magnetic resonance imaging', 'Circulating Tumor DNA'], 'conditions': ['Breast Cancer']}, 'referencesModule': {'references': [{'pmid': '36127090', 'type': 'DERIVED', 'citation': 'Janssen LM, Suelmann BBM, Elias SG, Janse MHA, van Diest PJ, van der Wall E, Gilhuijs KGA. Improving prediction of response to neoadjuvant treatment in patients with breast cancer by combining liquid biopsies with multiparametric MRI: protocol of the LIMA study - a multicentre prospective observational cohort study. BMJ Open. 2022 Sep 20;12(9):e061334. doi: 10.1136/bmjopen-2022-061334.'}]}, 'descriptionModule': {'briefSummary': 'The aim of the study is to show proof of concept for combining multi-parametric MRI with liquid biopsies in addition to conventional clinical and pathologic information, to accurately predict response to neoadjuvant treatment for patients with primary breast cancer.', 'detailedDescription': "The response to neoadjuvant chemotherapy (NAC) in early stage breast cancer has important prognostic implications. Early, dynamic prediction of response allows for adaption of the treatment plan before completion, or even before the start of treatment. This strategy can help prevent overtreatment and related toxicity and correct for undertreatment with an ineffective regimen. The hypothesis of this study is that accurate dynamic response prediction may be reached by combining multi-parametric MRI with liquid biopsies prior to, during and after NAC, in addition to conventional clinical and pathological information. Magnetic resonance imaging (MRI) is non-invasive and is typically used for response evaluation in current clinical practice. It shows the size and perfusion of the tumor as they change during treatment. However, tumor size on MRI has limited predictive value for response to therapy. Multi-parametric MRI uses different imaging protocols in one session to measure more functional items than perfusion alone, addressing different aspects of tumor biology, and possibly improving predictive value. With this improvement, imaging still only visualizes macroscopic disease. Therefore, in the LIMA study, MRI will be combined with liquid biopsies containing circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), which have both shown prognostic and predictive values in early stage breast cancer. Since the ctDNA may originate from cells in every part of the tumor, it may capture tumor heterogeneity. Liquid biopsies are minimally invasive and provide insight into microscopic tumor load and the tumor's genetic picture.\n\nThe aim of the study is to show proof of concept for combining multi-parametric MRI with liquid biopsies in addition to conventional clinical and pathologic information, to accurately predict response to neoadjuvant treatment for patients with primary breast cancer.\n\nThe LIMA is a multicenter prospective observational cohort study. Multi-parametric MRI will we performed prior to NAC, halfway and after completion of NAC. Liquid biopsies will be obtained before start of treatment, every 2 weeks during treatment and after completion of NAC. 100 patients will be enrolled in different hospitals.\n\nFunding from the European Union Horizon 2020 research and innovation program under grant agreement no. 755333 (LIMA)"}, 'eligibilityModule': {'sex': 'FEMALE', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Histologically proven invasive breast carcinoma\n* Planned for neoadjuvant chemotherapy (and in case of a Her2-positive tumor: addition of trastuzumab and/or pertuzumab)\n\nExclusion Criteria:\n\n* Luminal A breast cancer (defined as: ER-positive and HER2-negative by immunohistochemistry and Bloom and Richardson grade 1 or 2)\n* Inflammatory breast cancer\n* Distant metastases on PET/CT\n* Other active malignant disease in the past 5 years (excluded squamous cell or basal cell carcinoma of the skin)\n* Pregnant or lactating women\n* Contra-indications for MRI according to standard hospital guidelines\n* Contra-indications for gadolinium-based contrast-agent, including known prior allergic reaction to any contrast-agent, and renal failure, defined by GFR \\< 30 mL/min/1.73m2'}, 'identificationModule': {'nctId': 'NCT04223492', 'acronym': 'LIMA', 'briefTitle': 'Liquid Biopsies and Imaging in Breast Cancer', 'organization': {'class': 'OTHER', 'fullName': 'UMC Utrecht'}, 'officialTitle': 'Liquid Biopsies and Imaging in Breast Cancer', 'orgStudyIdInfo': {'id': '19-396'}}, 'armsInterventionsModule': {'armGroups': [{'type': 'OTHER', 'label': 'Neoadjuvant systemic treatment', 'description': 'All patients undergo standard neoadjuvant treatment and additional multi-parametric MRI and liquid biopsies during neoadjuvant treatment.', 'interventionNames': ['Diagnostic Test: Liquid biopsy', 'Diagnostic Test: Multi-parametric MRI']}], 'interventions': [{'name': 'Liquid biopsy', 'type': 'DIAGNOSTIC_TEST', 'description': 'A blood sample containing circulating tumor DNA and circulating tumor cells.', 'armGroupLabels': ['Neoadjuvant systemic treatment']}, {'name': 'Multi-parametric MRI', 'type': 'DIAGNOSTIC_TEST', 'description': 'Multi-parametric MRI combines different imaging protocols in one session to measure more functional items than perfusion alone, addressing different aspects of tumor biology.', 'armGroupLabels': ['Neoadjuvant systemic treatment']}]}, 'contactsLocationsModule': {'locations': [{'zip': '3584 CX', 'city': 'Utrecht', 'country': 'Netherlands', 'facility': 'Universitair Medisch Centrum Utrecht', 'geoPoint': {'lat': 52.09083, 'lon': 5.12222}}], 'overallOfficials': [{'name': 'Kenneth GA Gilhuijs, PhD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'UMC Utrecht'}]}, 'ipdSharingStatementModule': {'infoTypes': ['STUDY_PROTOCOL', 'SAP'], 'timeFrame': 'Within 2 years after the LIMA Project has ended (and the LIMA breast cancer trial thus has been closed by the IRB)', 'ipdSharing': 'YES', 'description': 'Meta-data will be made publicly available. A steering committee will assess any request for reuse of the data.', 'accessCriteria': 'Any reasonable request compliant with patient consent will be granted.'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'UMC Utrecht', 'class': 'OTHER'}, 'collaborators': [{'name': 'Horizon 2020 - European Commission', 'class': 'OTHER'}, {'name': 'Philips Electronics Nederland BV', 'class': 'INDUSTRY'}, {'name': 'Agena Bioscience GmbH', 'class': 'UNKNOWN'}, {'name': 'DiaDx', 'class': 'UNKNOWN'}, {'name': 'Stilla Technologies', 'class': 'UNKNOWN'}, {'name': 'ANGLE Europe Limited', 'class': 'UNKNOWN'}, {'name': 'ALS Automated Lab Solutions GmbH', 'class': 'UNKNOWN'}, {'name': 'Institut National de la Santé Et de la Recherche Médicale, France', 'class': 'OTHER_GOV'}, {'name': 'Philips GmbH Innovate Technologies', 'class': 'UNKNOWN'}, {'name': "Institut du Cancer de Montpellier - Val d'Aurelle", 'class': 'OTHER'}], 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Associate Professor', 'investigatorFullName': 'Dr. Kenneth Gilhuijs', 'investigatorAffiliation': 'UMC Utrecht'}}}}