Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D006349', 'term': 'Heart Valve Diseases'}], 'ancestors': [{'id': 'D006331', 'term': 'Heart Diseases'}, {'id': 'D002318', 'term': 'Cardiovascular Diseases'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'RETROSPECTIVE', 'observationalModel': 'CASE_CONTROL'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 500000}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2024-03-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2024-07', 'completionDateStruct': {'date': '2024-05-30', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2024-07-02', 'studyFirstSubmitDate': '2024-06-20', 'studyFirstSubmitQcDate': '2024-06-20', 'lastUpdatePostDateStruct': {'date': '2024-07-05', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2024-06-26', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2024-05-30', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Progression of valvular heart diseases', 'timeFrame': '15 years', 'description': 'There would be echo records of subjectes of the study during follow-up. So for subjects with baseline none or mild valvular heart diseases, including mitral regurgitation, aortic regurgitation, and tricuspid regurgitation, there might be some with progression to moderate or severe valvular heart diseases, and some other without this progression. The primary outcome of the study would be the progression of valvular heart diseases from none or mild to moderateor severe, as assessed by echocardiography.'}]}, 'oversightModule': {'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'conditions': ['Electrocardiogram, Valvular Heart Disease']}, 'descriptionModule': {'briefSummary': 'This is a retrospective study to establish models for the prediction of future valvular heart diseases with artificial intelligence-enhanced electrocardiogram (ECG).'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'An overall population.', 'healthyVolunteers': True, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Subjects that received ECG and echocardiography tests during a date frame.\n\nExclusion Criteria:\n\n* Subjects who is younger than 18 years of age.'}, 'identificationModule': {'nctId': 'NCT06475157', 'briefTitle': 'Artificial Intelligence-enhanced Electrocardiogram Diagnoses and Predicts Future Regurgitant Valvular Heart Diseases', 'organization': {'class': 'OTHER', 'fullName': 'Shanghai Zhongshan Hospital'}, 'officialTitle': 'Artificial Intelligence-enhanced Electrocardiogram Diagnoses and Predicts Future', 'orgStudyIdInfo': {'id': 'AIECG_VHDP'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'Patient group with progression of valvular heart diseases', 'interventionNames': ['Other: No intervention']}, {'label': 'Patient group without progression of valvular heart diseases', 'interventionNames': ['Other: No intervention']}], 'interventions': [{'name': 'No intervention', 'type': 'OTHER', 'description': 'No intervention is applied.', 'armGroupLabels': ['Patient group with progression of valvular heart diseases', 'Patient group without progression of valvular heart diseases']}]}, 'contactsLocationsModule': {'locations': [{'zip': '200032', 'city': 'Shanghai', 'country': 'China', 'facility': '180 Fenglin Road', 'geoPoint': {'lat': 31.22222, 'lon': 121.45806}}, {'city': 'London', 'country': 'United Kingdom', 'facility': 'Hammersmiths Hospital', 'geoPoint': {'lat': 51.50853, 'lon': -0.12574}}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Shanghai Zhongshan Hospital', 'class': 'OTHER'}, 'responsibleParty': {'type': 'SPONSOR'}}}}