Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D029424', 'term': 'Pulmonary Disease, Chronic Obstructive'}, {'id': 'D009043', 'term': 'Motor Activity'}], 'ancestors': [{'id': 'D008173', 'term': 'Lung Diseases, Obstructive'}, {'id': 'D008171', 'term': 'Lung Diseases'}, {'id': 'D012140', 'term': 'Respiratory Tract Diseases'}, {'id': 'D002908', 'term': 'Chronic Disease'}, {'id': 'D020969', 'term': 'Disease Attributes'}, {'id': 'D010335', 'term': 'Pathologic Processes'}, {'id': 'D013568', 'term': 'Pathological Conditions, Signs and Symptoms'}, {'id': 'D001519', 'term': 'Behavior'}]}, 'interventionBrowseModule': {'meshes': [{'id': 'D002364', 'term': 'Caseins'}, {'id': 'D000067796', 'term': 'Whey'}], 'ancestors': [{'id': 'D008894', 'term': 'Milk Proteins'}, {'id': 'D000080224', 'term': 'Animal Proteins, Dietary'}, {'id': 'D004044', 'term': 'Dietary Proteins'}, {'id': 'D011506', 'term': 'Proteins'}, {'id': 'D000602', 'term': 'Amino Acids, Peptides, and Proteins'}, {'id': 'D010750', 'term': 'Phosphoproteins'}, {'id': 'D008892', 'term': 'Milk'}, {'id': 'D001628', 'term': 'Beverages'}, {'id': 'D000066888', 'term': 'Diet, Food, and Nutrition'}, {'id': 'D010829', 'term': 'Physiological Phenomena'}, {'id': 'D003611', 'term': 'Dairy Products'}, {'id': 'D005502', 'term': 'Food'}, {'id': 'D019602', 'term': 'Food and Beverages'}]}}, 'protocolSection': {'designModule': {'phases': ['NA'], 'studyType': 'INTERVENTIONAL', 'designInfo': {'allocation': 'RANDOMIZED', 'maskingInfo': {'masking': 'DOUBLE', 'whoMasked': ['PARTICIPANT', 'INVESTIGATOR']}, 'interventionModel': 'CROSSOVER'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 24}}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2002-12'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2011-08', 'completionDateStruct': {'date': '2004-12', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2011-08-16', 'studyFirstSubmitDate': '2011-08-09', 'studyFirstSubmitQcDate': '2011-08-16', 'lastUpdatePostDateStruct': {'date': '2011-08-17', 'type': 'ESTIMATED'}, 'studyFirstPostDateStruct': {'date': '2011-08-17', 'type': 'ESTIMATED'}, 'primaryCompletionDateStruct': {'date': '2003-12', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Change in Net whole body protein synthesis', 'timeFrame': '6 hours', 'description': 'Net whole body protein synthesis during protein feeding and the response to a 20 min cycle exercise bout'}], 'secondaryOutcomes': [{'measure': 'Change in whole body protein synthesis rate', 'timeFrame': '6 hours', 'description': 'Whole body protein synthesis rate during protein feeding and the response to 20 min cycle exercise bout'}, {'measure': 'Change in Leucine turnover', 'timeFrame': '6 hours', 'description': 'Leucine turnover during protein feeding and the response to a 20 min cycle exercise bout'}, {'measure': 'Change in Isoleucine turnover', 'timeFrame': '6 hours', 'description': 'Isoleucine turnover during protein feeding and the response to a 20 min cycle exercise bout'}, {'measure': 'Change in Valine turnover', 'timeFrame': '6 hours', 'description': 'Valine turnover during protein feeding and the response to a 20 min cycle exercise bout'}, {'measure': 'Change in plasma lactate concentration', 'timeFrame': '6 hours', 'description': 'Plasma lactate during protein feeding and the response to a 20 min cycle exercise bout'}, {'measure': 'Change in NH3 concentration', 'timeFrame': '6 hours', 'description': 'Plasma NH3 during protein feeding and the response to a 20 min cycle exercise bout'}, {'measure': 'Change in plasma amino acids concentrations', 'timeFrame': '6 hours', 'description': 'Plasma amino acid concentrations during protein feeding and the response to a 20 min cycle exercise bout'}, {'measure': 'Splanchnic extraction of amino acids during protein feeding', 'timeFrame': '6 hours', 'description': 'Splanchnic extraction of amino acids during protein feeding and the response to a 20 min cycle exercise bout'}, {'measure': 'Change in whole body protein breakdown rate', 'timeFrame': '6 hours', 'description': 'Whole body protein breakdown rate during protein feeding and the response to cycle exercise'}]}, 'oversightModule': {'oversightHasDmc': False}, 'conditionsModule': {'keywords': ['COPD', 'protein metabolism', 'branched-chain amino acid metabolism', 'exercise', 'protein feeding'], 'conditions': ['Chronic Obstructive Pulmonary Disease']}, 'referencesModule': {'references': [{'pmid': '17284740', 'type': 'RESULT', 'citation': 'Engelen MP, Rutten EP, De Castro CL, Wouters EF, Schols AM, Deutz NE. Supplementation of soy protein with branched-chain amino acids alters protein metabolism in healthy elderly and even more in patients with chronic obstructive pulmonary disease. Am J Clin Nutr. 2007 Feb;85(2):431-9. doi: 10.1093/ajcn/85.2.431.'}, {'pmid': '16087980', 'type': 'RESULT', 'citation': 'Engelen MP, Rutten EP, De Castro CL, Wouters EF, Schols AM, Deutz NE. Altered interorgan response to feeding in patients with chronic obstructive pulmonary disease. Am J Clin Nutr. 2005 Aug;82(2):366-72. doi: 10.1093/ajcn.82.2.366.'}, {'pmid': '22682082', 'type': 'DERIVED', 'citation': 'Engelen MP, De Castro CL, Rutten EP, Wouters EF, Schols AM, Deutz NE. Enhanced anabolic response to milk protein sip feeding in elderly subjects with COPD is associated with a reduced splanchnic extraction of multiple amino acids. Clin Nutr. 2012 Oct;31(5):616-24. doi: 10.1016/j.clnu.2012.04.006. Epub 2012 Jun 6.'}, {'pmid': '22512824', 'type': 'DERIVED', 'citation': 'Engelen MP, Rutten EP, De Castro CL, Wouters EF, Schols AM, Deutz NE. Casein protein results in higher prandial and exercise induced whole body protein anabolism than whey protein in chronic obstructive pulmonary disease. Metabolism. 2012 Sep;61(9):1289-300. doi: 10.1016/j.metabol.2012.03.001. Epub 2012 Apr 17.'}]}, 'descriptionModule': {'briefSummary': 'Studies on resting human muscle show that ingestion of the branched-chain amino acids (BCAA): leucine, valine and isoleucine have an anabolic effect on muscle protein metabolism. However, the effects of BCAA intake on protein metabolism during exercise are less clear. When BCAA were supplied as single amino acids, without other amino acids and/or carbohydrates, no effects were observed on protein kinetics. On the other hand, ingestion of BCAA during running appeared to reduce the catabolic effect of running on muscle protein metabolism. These experiments were all performed with mixtures of the BCAA with or without carbohydrates but not in the form of complete meals with food protein as a basis. Therefore, it is still unknown whether a protein meal, containing a substantial amount of BCAA is beneficial during exercise by inducing an anabolic effect.\n\nWhey and Casein protein contain a substantial amount of BCAA in contrast to Soy protein. Therefore, it is hypothesized that milk-based proteins are a better and more physiological source of BCAA during exercise and will lead to more protein anabolism. Most of the available studies have been carried out in young and fit humans but there are hardly any data are available in the increasing population of the elderly. Therefore it is still unknown whether a BCAA rich protein meal can enhance the anabolic effect of exercise in older individuals.\n\nBesides sarcopenia, a substantial part of the elderly is suffering from a chronic systemic disease such as chronic obstructive pulmonary disease (COPD). COPD represents an important health care problem. COPD is the fourth leading cause of death and will be the third leading cause worldwide in 2020. Besides the local impairment, COPD is a chronic wasting disease, associated with alterations in intermediary metabolism. Substantial disturbances have been found in BCAA (and related) metabolism in these patients at rest and during exercise. It might therefore be of clinical relevance to study the metabolic effects of BCAA rich protein meals in patients with COPD at rest and during exercise.', 'detailedDescription': 'In this study we investigate whether milk based protein sources of BCAA (casein and whey proteins) are superior to soy protein in the stimulation of protein anabolism before, during and after cycle exercise in COPD and healthy elderly and young subjects, and whether adding BCAA to soy protein will increase protein anabolism in these subjects.\n\nTo investigate Leucine, Isoleucine and Valine metabolism during and after exercise in COPD and healthy subjects'}, 'eligibilityModule': {'sex': 'MALE', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '45 Years', 'healthyVolunteers': True, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Irreversible chronic airflow limitation (FEV1 \\<70% of predicted)\n* Clinically stable condition\n\nExclusion Criteria:\n\n* Oxygen supplementation\n* Respiratory tract infection or exacerbation of his disease at least 4 weeks prior to the study\n* Oral corticosteroids as maintenance medication\n* Other concomitant metabolic disease (ie malignancy, cardiac failure, recent surgery, severe endocrine, hepatic or renal disorder)'}, 'identificationModule': {'nctId': 'NCT01418469', 'briefTitle': 'Disturbances in BCAA Metabolism and the Effects of Feeding and Exercise in COPD', 'organization': {'class': 'OTHER', 'fullName': 'Maastricht University Medical Center'}, 'officialTitle': 'The Effects of Exercise on the Metabolic Fate of Branched Chain Amino Acids in Relation to Aging and Chronic Disease.', 'orgStudyIdInfo': {'id': 'MEC 02-059.3'}}, 'armsInterventionsModule': {'armGroups': [{'type': 'EXPERIMENTAL', 'label': 'Caseinate protein intake', 'description': '18 mg protein/kg body weight caseinate and 46 mg maltodextrin / kg body weight per 20 min sip feeding', 'interventionNames': ['Dietary Supplement: Caseinate']}, {'type': 'EXPERIMENTAL', 'label': 'Whey protein isolate intake', 'description': '18 mg protein/kg body weight whey protein isolate and 46 mg maltodextrin / kg body weight per 20 min sip feeding', 'interventionNames': ['Dietary Supplement: Whey protein isolate']}, {'type': 'EXPERIMENTAL', 'label': 'Soy protein intake', 'description': '18 mg protein/kg body weight soy and 46 mg maltodextrin / kg body weight per 20 min sip feeding', 'interventionNames': ['Dietary Supplement: Soy']}, {'type': 'EXPERIMENTAL', 'label': 'soy+BCAA protein intake', 'description': '18 mg protein/kg body weight soy+BCAA and 46 mg maltodextrin / kg body weight per 20 min sip feeding', 'interventionNames': ['Dietary Supplement: soy+BCAA']}], 'interventions': [{'name': 'Caseinate', 'type': 'DIETARY_SUPPLEMENT', 'otherNames': ['casein'], 'description': '18 mg protein/kg body weight caseinate and 46 mg maltodextrin / kg body weight per 20 min sip feeding', 'armGroupLabels': ['Caseinate protein intake']}, {'name': 'Whey protein isolate', 'type': 'DIETARY_SUPPLEMENT', 'otherNames': ['Whey'], 'description': '18 mg protein/kg body weight whey protein isolate and 46 mg maltodextrin / kg body weight per 20 min sip feeding', 'armGroupLabels': ['Whey protein isolate intake']}, {'name': 'Soy', 'type': 'DIETARY_SUPPLEMENT', 'description': '18 mg protein/kg body weight soy and 46 mg maltodextrin / kg body weight per 20 min sip feeding', 'armGroupLabels': ['Soy protein intake']}, {'name': 'soy+BCAA', 'type': 'DIETARY_SUPPLEMENT', 'description': '18 mg protein/kg body weight soy+BCAA and 46 mg maltodextrin / kg body weight per 20 min sip feeding', 'armGroupLabels': ['soy+BCAA protein intake']}]}, 'contactsLocationsModule': {'locations': [{'city': 'Maastricht', 'country': 'Netherlands', 'facility': 'Maastricht UMC', 'geoPoint': {'lat': 50.84833, 'lon': 5.68889}}], 'overallOfficials': [{'name': 'Nicolaas EP Deutz, MD, PhD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'University of Arkansas'}]}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Maastricht University Medical Center', 'class': 'OTHER'}, 'collaborators': [{'name': 'European Dairy Association (EDA), Brussels', 'class': 'UNKNOWN'}], 'responsibleParty': {'oldNameTitle': 'Nicolaas EP Deutz', 'oldOrganization': 'University of Arkansas for Medical Sciences'}}}}