Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D003924', 'term': 'Diabetes Mellitus, Type 2'}, {'id': 'D003920', 'term': 'Diabetes Mellitus'}], 'ancestors': [{'id': 'D044882', 'term': 'Glucose Metabolism Disorders'}, {'id': 'D008659', 'term': 'Metabolic Diseases'}, {'id': 'D009750', 'term': 'Nutritional and Metabolic Diseases'}, {'id': 'D004700', 'term': 'Endocrine System Diseases'}]}}, 'protocolSection': {'designModule': {'bioSpec': {'retention': 'SAMPLES_WITHOUT_DNA', 'description': 'Whole blood sample in EDTA containing tube would be refrigerated and used in developing a new biomarker'}, 'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 500}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'NOT_YET_RECRUITING', 'startDateStruct': {'date': '2007-01'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2016-04', 'completionDateStruct': {'date': '2026-02', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2016-04-15', 'studyFirstSubmitDate': '2016-03-27', 'studyFirstSubmitQcDate': '2016-03-27', 'lastUpdatePostDateStruct': {'date': '2016-04-18', 'type': 'ESTIMATED'}, 'studyFirstPostDateStruct': {'date': '2016-04-01', 'type': 'ESTIMATED'}, 'primaryCompletionDateStruct': {'date': '2026-02', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Life style assessment - Past medical history - Smoking, alcohol history - Sleep, exercise, daily activity check - Diet - Reproductive status (Women only) - Socioeconomic status', 'timeFrame': 'an expected average of 12 weeks', 'description': 'Measuring above all, investigators plan to investigate how clinical parameters help to predict and prevent diabetic vascular complications'}, {'measure': 'Past medical history', 'timeFrame': 'an expected average of 12 weeks', 'description': 'Measuring above all, investigators plan to investigate how clinical parameters help to predict and prevent diabetic vascular complications'}, {'measure': 'Smoking, alcohol history', 'timeFrame': 'an expected average of 12 weeks', 'description': 'Measuring above all, investigators plan to investigate how clinical parameters help to predict and prevent diabetic vascular complications'}, {'measure': 'Sleep, exercise, daily activity check', 'timeFrame': 'an expected average of 12 weeks', 'description': 'Measuring above all, investigators plan to investigate how clinical parameters help to predict and prevent diabetic vascular complications'}, {'measure': 'Diet', 'timeFrame': 'an expected average of 12 weeks', 'description': 'Measuring above all, investigators plan to investigate how clinical parameters help to predict and prevent diabetic vascular complications'}, {'measure': 'Reproductive status (Women only)', 'timeFrame': 'an expected average of 12 weeks', 'description': 'Measuring above all, investigators plan to investigate how clinical parameters help to predict and prevent diabetic vascular complications'}, {'measure': 'Socioeconomic status', 'timeFrame': 'an expected average of 12 weeks', 'description': 'Measuring above all, investigators plan to investigate how clinical parameters help to predict and prevent diabetic vascular complications'}, {'measure': 'Anthropometric measurements : Height, weight, waist circumference, pulse rate, blood pressure', 'timeFrame': 'an expected average of 12 weeks', 'description': 'Measuring above all, investigators plan to investigate how clinical parameters help to predict and prevent diabetic vascular complications'}, {'measure': 'SMA, TG, HDL, LDLM apoA, apoB', 'timeFrame': 'an expected average of 12 weeks', 'description': 'Measuring above all, investigators plan to investigate how clinical parameters help to predict and prevent diabetic vascular complications'}, {'measure': 'PC2hrs, HbA1C, Insulin, C-peptide (AC, PC2hr), hs-CRP', 'timeFrame': 'an expected average of 12 weeks', 'description': 'Measuring above all, investigators plan to investigate how clinical parameters help to predict and prevent diabetic vascular complications'}, {'measure': 'Urine protein, albumin, creatinine', 'timeFrame': 'an expected average of 12 weeks', 'description': 'Measuring above all, investigators plan to investigate how clinical parameters help to predict and prevent diabetic vascular complications'}, {'measure': 'EKG, Neurometer, Chest PA, Abdominal sonography', 'timeFrame': 'an expected average of 12 weeks', 'description': 'Measuring above all, investigators plan to investigate how clinical parameters help to predict and prevent diabetic vascular complications'}, {'measure': 'Fundus photography, fat computed tomography', 'timeFrame': 'an expected average of 12 weeks', 'description': 'Measuring above all, investigators plan to investigate how clinical parameters help to predict and prevent diabetic vascular complications'}, {'measure': 'HOMA-IR, HOMA-β', 'timeFrame': 'an expected average of 12 weeks', 'description': 'Measuring above all, investigators plan to investigate how clinical parameters help to predict and prevent diabetic vascular complications'}]}, 'oversightModule': {'oversightHasDmc': True}, 'conditionsModule': {'keywords': ['Diabetes', 'DM complication'], 'conditions': ['Type 2 Diabetes', 'Impaired Glucose Intolerance']}, 'descriptionModule': {'briefSummary': 'The prevalence of type 2 diabetes has consistently increased and type 2 diabetes can cause many types of vascular complications. Diabetes develops due to glucose intolerance. Early detection and intervention in the stage of glucose intolerance makes it afford to prevent overt diabetes and its complications. This study was designed to make a cohort of korean patients with glucose intolerance to construct a long term database about clinical characteristics of these patients.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'maximumAge': '100 Years', 'minimumAge': '20 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Patients with either type 2 diabetes or impaired glucose toloerance who are older than 20 years old and have attended Gangnam Severance hospital for regular follow up.', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n1. Patients older than 20 years old who has visited Gangnam severance hospital since January 2007.\n2. Patients with either diabetes or impaired glucose tolerance\n3. Patients with at least 6 months of follow-up period\n\nExclusion Criteria:\n\n1\\. Patients with gestational diabetes, any active stage of cancer and severe disability'}, 'identificationModule': {'nctId': 'NCT02726256', 'briefTitle': 'G-CREDIT (Gangnam-Cohort for Risk Evaluation of Diabetes and Impaired Glucose Tolerance)', 'organization': {'class': 'OTHER', 'fullName': 'Yonsei University'}, 'orgStudyIdInfo': {'id': '3-2010-0195'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'Diabetes and Impaired glucose Tolerance (G-CREDIT)', 'description': 'Patients with either type 2 diabetes or impaired glucose tolerance who are older than 20 years old and have attended Gangnam Severance hospital for regular follow up.'}]}, 'contactsLocationsModule': {'centralContacts': [{'name': 'Chul Woo Ahn, MD', 'role': 'CONTACT', 'email': 'acw@yuhs.ac', 'phone': '82-02-2019-3339'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'YES', 'description': 'This study has a plan to share data'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Yonsei University', 'class': 'OTHER'}, 'responsibleParty': {'type': 'SPONSOR'}}}}