Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D007022', 'term': 'Hypotension'}, {'id': 'D006620', 'term': 'Hip Fractures'}], 'ancestors': [{'id': 'D014652', 'term': 'Vascular Diseases'}, {'id': 'D002318', 'term': 'Cardiovascular Diseases'}, {'id': 'D005264', 'term': 'Femoral Fractures'}, {'id': 'D050723', 'term': 'Fractures, Bone'}, {'id': 'D014947', 'term': 'Wounds and Injuries'}, {'id': 'D025981', 'term': 'Hip Injuries'}, {'id': 'D007869', 'term': 'Leg Injuries'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 100}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'UNKNOWN', 'lastKnownStatus': 'ACTIVE_NOT_RECRUITING', 'startDateStruct': {'date': '2016-12'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2016-12', 'completionDateStruct': {'date': '2017-11', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2016-12-06', 'studyFirstSubmitDate': '2016-12-04', 'studyFirstSubmitQcDate': '2016-12-04', 'lastUpdatePostDateStruct': {'date': '2016-12-08', 'type': 'ESTIMATED'}, 'studyFirstPostDateStruct': {'date': '2016-12-07', 'type': 'ESTIMATED'}, 'primaryCompletionDateStruct': {'date': '2017-10', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Detecting pleth variability index-hypotension relationship', 'timeFrame': 'one year'}], 'secondaryOutcomes': [{'measure': 'pleth variability index response to fluid management', 'timeFrame': 'one year'}, {'measure': 'Make a differential diagnosis of hypotension with pleth variability index', 'timeFrame': 'one year'}, {'measure': 'Correlation between arterial hemoglobin and pleth variability index hemoglobin', 'timeFrame': 'one year'}]}, 'oversightModule': {'oversightHasDmc': False}, 'conditionsModule': {'keywords': ['Hypotension', 'Pleth variability index', 'Hip Fracture', 'Spinal anesthesia'], 'conditions': ['Hypotension', 'Pleth Variability Index']}, 'referencesModule': {'references': [{'pmid': '15090949', 'type': 'BACKGROUND', 'citation': 'Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, Neumann A, Ali A, Cheang M, Kavinsky C, Parrillo JE. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004 Mar;32(3):691-9. doi: 10.1097/01.ccm.0000114996.68110.c9.'}, {'pmid': '17080001', 'type': 'BACKGROUND', 'citation': 'Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, Teboul JL. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007 Jan;35(1):64-8. doi: 10.1097/01.CCM.0000249851.94101.4F.'}, {'pmid': '16286349', 'type': 'BACKGROUND', 'citation': 'Preisman S, Kogan S, Berkenstadt H, Perel A. Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth. 2005 Dec;95(6):746-55. doi: 10.1093/bja/aei262.'}, {'pmid': '18522935', 'type': 'BACKGROUND', 'citation': 'Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, Lehot JJ. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008 Aug;101(2):200-6. doi: 10.1093/bja/aen133. Epub 2008 Jun 2.'}, {'pmid': '19797246', 'type': 'BACKGROUND', 'citation': 'Derichard A, Robin E, Tavernier B, Costecalde M, Fleyfel M, Onimus J, Lebuffe G, Chambon JP, Vallet B. Automated pulse pressure and stroke volume variations from radial artery: evaluation during major abdominal surgery. Br J Anaesth. 2009 Nov;103(5):678-84. doi: 10.1093/bja/aep267. Epub 2009 Sep 29.'}, {'pmid': '16980709', 'type': 'BACKGROUND', 'citation': 'Solus-Biguenet H, Fleyfel M, Tavernier B, Kipnis E, Onimus J, Robin E, Lebuffe G, Decoene C, Pruvot FR, Vallet B. Non-invasive prediction of fluid responsiveness during major hepatic surgery. Br J Anaesth. 2006 Dec;97(6):808-16. doi: 10.1093/bja/ael250. Epub 2006 Sep 16.'}, {'pmid': '18349191', 'type': 'BACKGROUND', 'citation': 'Cannesson M, Delannoy B, Morand A, Rosamel P, Attof Y, Bastien O, Lehot JJ. Does the Pleth variability index indicate the respiratory-induced variation in the plethysmogram and arterial pressure waveforms? Anesth Analg. 2008 Apr;106(4):1189-94, table of contents. doi: 10.1213/ane.0b013e318167ab1f.'}, {'pmid': '20035228', 'type': 'BACKGROUND', 'citation': 'Zimmermann M, Feibicke T, Keyl C, Prasser C, Moritz S, Graf BM, Wiesenack C. Accuracy of stroke volume variation compared with pleth variability index to predict fluid responsiveness in mechanically ventilated patients undergoing major surgery. Eur J Anaesthesiol. 2010 Jun;27(6):555-61. doi: 10.1097/EJA.0b013e328335fbd1.'}, {'pmid': '20705785', 'type': 'BACKGROUND', 'citation': 'Forget P, Lois F, de Kock M. Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg. 2010 Oct;111(4):910-4. doi: 10.1213/ANE.0b013e3181eb624f. Epub 2010 Aug 12.'}, {'pmid': '20185658', 'type': 'BACKGROUND', 'citation': 'Desebbe O, Boucau C, Farhat F, Bastien O, Lehot JJ, Cannesson M. The ability of pleth variability index to predict the hemodynamic effects of positive end-expiratory pressure in mechanically ventilated patients under general anesthesia. Anesth Analg. 2010 Mar 1;110(3):792-8. doi: 10.1213/ANE.0b013e3181cd6d06.'}]}, 'descriptionModule': {'briefSummary': "Correct assessment of a patient's volume status is the most important goal for an anesthetist. However, most of the variables used for fluid response evaluation are invasive and technically challenging.Pulse oximeter is a non-invasive, standardized and widely used monitoring method in many countries. Our aim in this study is to investigate the usefulness of the noninvasive pleth variability index to predict hypotension in orthopedic hip fracture patients who underwent spinal anesthesia."}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['OLDER_ADULT'], 'minimumAge': '65 Years', 'samplingMethod': 'PROBABILITY_SAMPLE', 'studyPopulation': 'Patients who underwent spinal anesthesia for hip fracture', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* over 65 years old\n* Patients to undergo spinal anesthesia\n\nExclusion Criteria:\n\n* Patients under 65 years old\n* Patients to undergo general anesthesia or only sedation\n* Patients with cardiac arrhythmia\n* Patients with low ventricular ejection fraction\n* Heart valve disease patients'}, 'identificationModule': {'nctId': 'NCT02984956', 'briefTitle': 'Pleth Variability Index and Hypotension', 'organization': {'class': 'OTHER', 'fullName': 'Erzincan University'}, 'officialTitle': 'Hypotension Relationship With Pleth Variability Index In Hip Fracture Patients Who Underwent Spinal Anesthesia', 'orgStudyIdInfo': {'id': 'ERZINCAN UNIVERSITY 4'}}, 'armsInterventionsModule': {'interventions': [{'name': 'pleth variability index', 'type': 'DEVICE'}]}, 'contactsLocationsModule': {'locations': [{'city': 'Erzincan', 'country': 'Turkey (Türkiye)', 'facility': 'Erzincan University', 'geoPoint': {'lat': 39.73919, 'lon': 39.49015}}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Erzincan University', 'class': 'OTHER'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'assist. prof.', 'investigatorFullName': 'ILKE KUPELI', 'investigatorAffiliation': 'Erzincan University'}}}}