Viewing Study NCT06531967


Ignite Creation Date: 2025-12-25 @ 12:33 AM
Ignite Modification Date: 2026-01-22 @ 8:44 PM
Study NCT ID: NCT06531967
Status: ENROLLING_BY_INVITATION
Last Update Posted: 2024-08-01
First Post: 2024-07-25
Is Gene Therapy: True
Has Adverse Events: False

Brief Title: Predicting Mortality in Kidney Transplant Recipients
Sponsor:
Organization:

Raw JSON

{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D003643', 'term': 'Death'}], 'ancestors': [{'id': 'D010335', 'term': 'Pathologic Processes'}, {'id': 'D013568', 'term': 'Pathological Conditions, Signs and Symptoms'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 13000}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'ENROLLING_BY_INVITATION', 'startDateStruct': {'date': '2004-01-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2024-07', 'completionDateStruct': {'date': '2024-08-01', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2024-07-31', 'studyFirstSubmitDate': '2024-07-25', 'studyFirstSubmitQcDate': '2024-07-31', 'lastUpdatePostDateStruct': {'date': '2024-08-01', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2024-08-01', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2024-06-01', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Patient death', 'timeFrame': 'Up to 10 years after kidney transplantation', 'description': 'Patient death'}]}, 'oversightModule': {'oversightHasDmc': True, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'conditions': ['Death']}, 'descriptionModule': {'briefSummary': 'Accurately predicting kidney recipient risk of death has a crucial interest because of the organ shortage, the need to optimize allograft allocation by identifying high-risk patients who may not benefit from a transplant and improve the clinical decision-making after transplant to ensure that each patient survives as long as possible.\n\nHowever, according to a literature review the investigators performed, studies attempting to develop a kidney recipient death prediction model suffer from many shortcomings, including the lack of key risk factors, use of biased registry data, small sample size, lack of external validation in different countries and subpopulations, and short follow-up.\n\nThe present study thus aimed to address these limitations and develop a robust, generalizable kidney recipient death prediction model.', 'detailedDescription': "The number of individuals suffering from end-stage chronic renal disease (ESRD) worldwide has increased over time, exceeding seven million of patients in 2020. For individuals with ESRD, kidney transplantation is the best treatment in terms of patient survival, quality of life and from a cost-effective standpoint, as compared with dialysis, even in comorbid or elderly populations.\n\nAlthough the number of kidney transplantations performed each year has increased as well, it follows a lower pace than the increase of individuals on the waiting-list, resulting in an organ shortage. There is therefore a need to optimize allograft allocation by identifying the high-risk patients who may not benefit from a transplant and improve the clinical decision-making after transplant to ensure that each patient survives as long as possible.\n\nIn this context, a kidney recipient death prediction model may improve transplant clinical practice, allowing for the ability to evaluate the individual risk of post transplant mortality, already before undergoing transplantation, thereby guiding decision making. However, developing such a model is a very difficult task, as death after kidney transplantation depends on many parameters, such as donor age, history or cause of death, imaging parameters, patients' past medical history (e.g. diabetes, dialysis duration, hypertension), patients' biological parameters, as well as the function of the allograft, which depends on patients' immunological factors, or allograft related parameters such as HLA mismatches or cold ischemia time.\n\nThe goal of the present study was therefore to identify the determinants of death after kidney transplantation, and to develop and validate a prediction model that would help optimize allograft allocation and post-transplant patient management, using a large, international, highly phenotyped cohort of kidney recipients with extensive data collection and long-term follow-up."}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'maximumAge': '100 Years', 'minimumAge': '18 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Adult, de novo, kidney recipients who received only a kidney transplant', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Adult kidney recipients\n\nExclusion Criteria:\n\n* Multi-organ transplantation\n* Prior kidney transplant'}, 'identificationModule': {'nctId': 'NCT06531967', 'acronym': 'mBox', 'briefTitle': 'Predicting Mortality in Kidney Transplant Recipients', 'organization': {'class': 'OTHER', 'fullName': 'Paris Translational Research Center for Organ Transplantation'}, 'officialTitle': 'Development and Validation of a Prediction Model for Risk of Death in Kidney Transplant Recipients', 'orgStudyIdInfo': {'id': 'mBox_001'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'Necker hospital from Paris, France', 'description': 'Kidney recipients from Necker hospital', 'interventionNames': ['Other: No intervention']}, {'label': 'Saint-Louis hospital from Paris, France', 'description': 'Kidney recipients from Saint-Louis hospital', 'interventionNames': ['Other: No intervention']}, {'label': 'Bichat hospital from Paris, France', 'description': 'Kidney recipients from Bichat hospital', 'interventionNames': ['Other: No intervention']}, {'label': 'Bretonneau hospital from Tours, France', 'description': 'Kidney recipients from Bretonneau hospital', 'interventionNames': ['Other: No intervention']}, {'label': 'Toulouse hospital, France', 'description': 'Kidney recipients from Toulouse hospital', 'interventionNames': ['Other: No intervention']}, {'label': 'KU Leuven, Belgium', 'description': 'Kidney recipients from KU Leuven', 'interventionNames': ['Other: No intervention']}, {'label': 'Liege hospital from Belgium', 'description': 'Kidney recipients from Liege hospital', 'interventionNames': ['Other: No intervention']}, {'label': 'Leiden University Medical Center from the Netherlands', 'description': 'Kidney recipients from Leiden University Medical Center', 'interventionNames': ['Other: No intervention']}, {'label': 'Hospital of the University of Pennsylvania from Philadelphia, US', 'description': 'Kidney recipients from Hospital of the University of Pennsylvania', 'interventionNames': ['Other: No intervention']}, {'label': 'Mayo Clinic from Phoenix, US', 'description': 'Kidney recipients from Mayo Clinic', 'interventionNames': ['Other: No intervention']}, {'label': 'UCSF database', 'description': 'Kidney recipients data from real-world UCSF database', 'interventionNames': ['Other: No intervention']}, {'label': 'AP-HP database', 'description': 'Kidney recipients data from real-world AP-HP database', 'interventionNames': ['Other: No intervention']}], 'interventions': [{'name': 'No intervention', 'type': 'OTHER', 'description': 'No intervention', 'armGroupLabels': ['AP-HP database', 'Bichat hospital from Paris, France', 'Bretonneau hospital from Tours, France', 'Hospital of the University of Pennsylvania from Philadelphia, US', 'KU Leuven, Belgium', 'Leiden University Medical Center from the Netherlands', 'Liege hospital from Belgium', 'Mayo Clinic from Phoenix, US', 'Necker hospital from Paris, France', 'Saint-Louis hospital from Paris, France', 'Toulouse hospital, France', 'UCSF database']}]}, 'contactsLocationsModule': {'locations': [{'zip': '85054', 'city': 'Phoenix', 'state': 'Arizona', 'country': 'United States', 'facility': 'Department of Medicine, Mayo Clinic', 'geoPoint': {'lat': 33.44838, 'lon': -112.07404}}, {'zip': '94158', 'city': 'San Francisco', 'state': 'California', 'country': 'United States', 'facility': 'Bakar Computational Health Sciences Institute, University of California', 'geoPoint': {'lat': 37.77493, 'lon': -122.41942}}, {'zip': '19104', 'city': 'Philadelphia', 'state': 'Pennsylvania', 'country': 'United States', 'facility': 'Penn Transplant Institute, Hospital of the University of Pennsylvania', 'geoPoint': {'lat': 39.95238, 'lon': -75.16362}}, {'city': 'Leuven', 'country': 'Belgium', 'facility': 'Department of Nephrology and Renal Transplantation, University Hospitals Leuven', 'geoPoint': {'lat': 50.87959, 'lon': 4.70093}}, {'city': 'Liège', 'country': 'Belgium', 'facility': 'Division of Nephrology, University Hospital Liège (CHU)', 'geoPoint': {'lat': 50.63373, 'lon': 5.56749}}, {'city': 'Paris', 'country': 'France', 'facility': 'Necker hospital', 'geoPoint': {'lat': 48.85341, 'lon': 2.3488}}, {'city': 'Paris', 'country': 'France', 'facility': 'Saint-Louis hospital', 'geoPoint': {'lat': 48.85341, 'lon': 2.3488}}, {'city': 'Paris', 'country': 'France', 'facility': 'Tenon hospital', 'geoPoint': {'lat': 48.85341, 'lon': 2.3488}}, {'city': 'Toulouse', 'country': 'France', 'facility': 'Department of Nephrology and Organ Transplantation, Toulouse University Hospital', 'geoPoint': {'lat': 43.60426, 'lon': 1.44367}}, {'city': 'Tours', 'country': 'France', 'facility': 'Department of Nephrology and Clinical Immunology, University Hospital of Tours', 'geoPoint': {'lat': 47.39484, 'lon': 0.70398}}, {'city': 'Leiden', 'country': 'Netherlands', 'facility': 'Leiden Transplant Center, Leiden University Medical Center', 'geoPoint': {'lat': 52.15833, 'lon': 4.49306}}], 'overallOfficials': [{'name': 'Alexandre Loupy', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Paris Institute for Transplantation and Organ Regeneration (PITOR)'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'UNDECIDED'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Paris Translational Research Center for Organ Transplantation', 'class': 'OTHER'}, 'responsibleParty': {'type': 'SPONSOR'}}}}